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1 Introduction

Understanding how individuals make decisions about college major and how those decisions vary

across groups is crucial for educators and other policymakers seeking to address skill shortages in science,

technology, engineering, and mathematics (STEM). National policymakers have called for a dramatic

increase in the number of STEM graduates (Olson and Riordan, 2012), and research has documented

shortages in certain skills and sectors (Xue and Larson, 2015). In addition to overall shortages, women

remain persistently underrepresented in many quantitative fields such as economics, engineering, and

computer science. Although they represent more than half of all college graduates, women receive only

a third of bachelor’s degrees in economics and approximately a fifth of degrees in engineering and computer

science (author’s calculations using 2017 IPEDS data).

The gender gap in STEM education has implications for both equity and efficiency. The fields with

the fewest women also tend to be the highest-paying ones, so differences in specialization contribute to the

gender pay gap. Median lifetime earnings for economics or computer engineering majors—fields where men

are overrepresented—are roughly 40 percent higher than those for English or psychology majors—fields

where women are overrepresented (Webber, 2019). Furthermore, in a world where individuals specialize

according to comparative advantage, removing barriers or frictions that are preventing efficient sorting

across fields would increase overall productivity (Hsieh et al., 2019).

While differences in aptitude or performance explain little of the gender gap in specialization (Cheryan

et al., 2017; Ceci et al., 2014), differences by gender in beliefs about performance—conditional on actual

performance—may be responsible for differences in educational choices. Prior empirical work from

multiple disciplines has documented systematic differences in men’s and women’s perceptions of their own

performance or competence in various domains and tasks (Niederle and Vesterlund, 2007; Beyer, 1990;

Beyer and Bowden, 1997; Lundeberg et al., 1994; Marshman et al., 2018; Vincent-Ruz et al., 2018; Exley

and Kessler, 2022; Page and Ruebeck, 2022), while economic theory predicts that beliefs about field-specific
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ability are a determinant of field specialization (Altonji et al., 2016; Arcidiacono, 2004). Research from the

lab and the field has shown that information provision can de-bias beliefs and change behavior in a variety of

settings (Wozniak et al., 2014; Gonzalez, 2017; Bobba and Frisancho, 2019; Franco, 2019; Hakimov et al.,

2022). Several recent field experiments have shown that it is possible to change the academic decisions

of college students and close gaps in major choice with light-touch interventions, though cannot fully

disentangle the mechanisms responsible or the reasons for gender differences (Li, 2018; Porter and Serra,

2019; Bayer et al., 2019). Together, these prior strands of work suggest that beliefs about performance may

be malleable and salient enough to affect the college major choices of underrepresented groups, but causal

evidence on this mechanism has thus far been limited.

This paper provides large-scale experimental evidence isolating the effect of beliefs about relative

performance on college major choice, with an emphasis on understanding differences by gender. I study

approximately 5,700 undergraduate students in large introductory STEM courses across seven disciplines

at the University of Michigan: biology, chemistry, computer science, economics, engineering, physics, and

statistics. (Throughout the paper, references to STEM include economics.) The University of Michigan’s

patterns in STEM degree receipt by gender largely mirror national trends, making it a promising setting

to investigate gender gaps. In my primary experimental intervention, I provide students with information

about their performance relative to their classmates and relative to STEM majors. In a second treatment arm,

I provide a subset of high-performing students with additional encouragement emphasizing their STEM

potential.

I collect survey data prior to the intervention and at the end of the semester to measure students’

beliefs about relative performance. These data allow me to investigate baseline differences in beliefs by

gender independent of any intervention, as well as to understand how the provision of information changes

students’ beliefs. I combine these survey data with administrative data on students’ course-taking and major

choice.
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I find that absent any intervention, there are substantial gender differences in two key sets of beliefs

about relative performance among control students in the sample. The first is students’ prediction of their

relative rank in the course. At the beginning of the semester, all students tend to be overconfident in their

prediction of their rank, but control men on average overpredict their final performance by 4.5 percentile

ranks more than women. Though students become more accurate over the course of the semester, male

overconfidence remains. By the end of the term, control men still overestimate their performance by

four percentiles more than women do; this is due more to overconfidence of low-performing men than

underconfidence of women.

I also find striking and persistent gender differences in students’ accuracy in identifying the median

course grade for students who go on to major in STEM. Men are about ten percentage points more likely

to think the median course grade for students who go on to major in STEM is lower than it actually is,

while women are about 20 percentage points more likely to think it is higher than it is. The patterns in

this second type of belief, which no other study has measured, imply male overconfidence and female

underconfidence about their performance relative to others. A correlational exercise with students in the

control group indicates that these two types of beliefs may account for approximately seven percent of

the two-credit (half of a course) gender gap in STEM course-taking in the subsequent semester and 15

percent of the gap in major choice, even controlling for realized performance and a rich set of academic

and demographic characteristics. In this exercise, beliefs explain as much (or more) of the gap as does prior

math achievement.

Providing information on actual relative performance causes students to revise their beliefs

substantially. Among control students, the absolute value of men’s error in predicting their own percentile

is nearly three percentiles larger than women’s; the treatment closes this gap by half. I find no changes

in women’s beliefs about their class rank, even though they are also inaccurate (though less so than men).

The intervention closes the gap in underestimation of the course median for STEM majors by about a third,
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again by correcting men’s beliefs; they are five percentage points less likely to underestimate. The gap in

overestimation of the median also closes by nearly a third, this time due to women correctly updating; they

are five percentage points less likely to overestimate.

I find limited evidence that the informational intervention changed shorter or longer term behavior.

In the semester following the intervention, men decreased the number of STEM credits they took by 0.3

(three percent). However, I detect no change in the subsequent four semesters. I also detect little change

in women’s STEM course-taking; over five semesters, effect sizes are null with the exception of a 0.4

credit (six percent) decrease in the fourth post-intervention semester. In the five semesters following the

intervention, I find no change to the probability that either men or women declare a STEM major. All of

the point estimates on major choice are negative but statistically insignificant, suggesting a possible small

discouragement effect. Heterogeneity by pre-intervention beliefs suggests that students who received bad

news about their relative performance—both men and women—were discouraged by the information. The

modest changes to behavior do not appear to be driven by changes in students’ class performance, stress

about grades, or STEM self-efficacy beliefs.

Finally, the results suggest that framing information about relative performance more positively and

providing explicit encouragement to continue in STEM is not more effective at changing behavior than

information alone for high-performing students. I detect no differences by treatment arm on course-taking

or major choice behavior. For this reason, the majority of the results I present combine the two treatment

arms and reflect a general effect of information provision.

This study provides, to my knowledge, the largest scale evidence on the causal effect of beliefs and

belief updating on college major choice and the gender gap therein. Existing evidence has thus far been

limited by small sample size, narrowness of the population studied, and a lack of real world, long-term

follow-up data. The combination of a large-scale field experiment, a setting covering multiple STEM

disciplines, survey data on beliefs, and long-term administrative follow-up data represent a significant
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contribution to this much-studied topic.

As a whole, my experimental results suggest that while stark gender differences in beliefs exist,

and it is possible to debias them, light-touch information provision has a limited effect on behavior

and the male-female STEM gap. If anything, information may discourage overconfident students of all

genders. However, I cannot rule out that a more targeted or more intensive intervention could have larger,

more positive effects. It is also possible that a similar intervention with students who are younger than

college-age—and therefore might have more malleable beliefs and behavior—could be more effective.

The paper proceeds as follows. I summarize related literature in Section 2, introduce the setting and

data in Section 3, describe the experiment in Section 4, and lay out empirical methods in Section 5. I present

my results in Section 6. Section 7 contextualizes the results and Section 8 concludes.

2 Related Literature

Understanding and closing the gender gap in major choice has been the focus of much speculation

and research (see Delaney and Devereux (2021) for a review). Candidate mechanisms that may explain

differential rates of participation and persistence in STEM include: mathematical aptitude and comparative

advantage (Breda and Napp, 2019; Aucejo and James, 2021; Speer, 2023), risk aversion and willingness to

compete (Niederle and Vesterlund, 2007; Buser et al., 2014, 2017), (lack of) female role models (Bettinger

and Long, 2005; Carrell et al., 2010), gender composition of peers (Booth et al., 2018; Bostwick and

Weinberg, 2022), interest and relevance of the topics/curriculum (Jensen and Owen, 2000; Owen and

Hagstrom, 2021), preference for certain types of jobs and job characteristics (Zafar, 2013; Wiswall and

Zafar, 2015; Kuhn and Wolter, 2022), discrimination and bias (Carlana, 2019; Avitzour et al., 2020), toxic

culture and harassment (Aycock et al., 2019; Minnotte and Pedersen, 2023), response to grades and academic

feedback (Owen, 2010; Avilova and Goldin, 2020; Kugler et al., 2021), and method of assessment (Azmat
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et al., 2016; Iriberri and Rey-Biel, 2021; Griselda, 2022). A decision as consequential and complex as field

of study is almost certainly determined by many factors at multiple points in time. Rigorous causal evidence

attempting to isolate many of the above mechanisms has been limited and come to mixed conclusions

(Delaney and Devereux, 2021). Given the scope of the problem, there is particular interest in policies that

could increase female STEM participation at scale. Informational interventions are espeically appealing

given their low-cost, easily scalable nature.

Several strands of research point to confidence and beliefs about performance and ability as a key

driver of gender differences in major choice and a promising target of intervention. A seminal study by

Niederle and Vesterlund (2007) found that men were more overconfident than women about their relative

performance on a number-adding task, and this explained much of the gender gap in competitiveness, with

men choosing to enter a tournament style of compensation much more than women; the authors hypothesize

that this pattern could apply to the choice to enter competitive fields such as engineering. Lab studies in

psychology have documented similar gaps in confidence, with male participants reporting overly positive

self-evaluations on a male-typed task and female participants reporting overly negative self-evaluations

(Beyer, 1990; Beyer and Bowden, 1997). More recent work found that among students in introductory

science courses, male and female students with similar levels of knowledge and performance report different

levels of self-efficacy.1 Marshman et al. (2018) found that women with A’s in introductory physics courses

had self-efficacy levels on par with those of men earning C’s. A study with introductory chemistry students

similarly found that among students with similar SAT math scores, men had higher confidence in their

ability to be successful in chemistry (Vincent-Ruz et al., 2018). Exley and Kessler (2022) find, in an online

lab setting, that women describe their performance on a math and science task less positively than equally

performing men, and that this leads to (simulated) employment and earnings gaps by gender. In a second

analysis, they survey middle and high school students and find that gender differences in self-evaluation

1In the educational psychology literature, self-efficacy is defined as “the belief in one’s capability to be successful
in a particular task, course, or subject area” (Marshman et al., 2018, p. 020123-1).
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appear as early as sixth grade.

Although the gender differences in these studies are striking, none has connected the studied beliefs

with real-world decisions such as STEM persistence or major choice. One exception is Page and Ruebeck

(2022), who use PSID survey data and find a link between a childhood (age 8-11) measure of confidence

in math ability and adult outcomes including college major and earnings. Although the confidence measure

exhibits significant gender differences, the authors cannot make causal claims, and the data used lack the

precision needed to conclude that math confidence explains gender gaps in later outcomes.

Although empirical causal evidence is limited, two canonical economic frameworks provide strong

theoretical motivation for the importance of performance beliefs in college major decisions. The first is a

discrete choice model of field specialization, first formalized by Roy (1951). In the Roy model and more

recent variants (Altonji, 1993; Altonji et al., 2016; Arcidiacono, 2004; Arcidiacono et al., 2016), individuals

choose a field that maximizes their expected utility. Beliefs about field-specific ability are an input into the

expected value of that field; all else equal, students with higher beliefs about their ability in STEM are more

likely to choose STEM. The second framework is one of Bayesian updating and learning over time (e.g.,

Mobius et al., 2014; Coffman et al., 2019). In this framework, individuals observe their true ability with

noise, and update beliefs as they receive additional signals in the form of academic performance and other

feedback.

An implication of these models is that, assuming a positive relationship between beliefs about

major-specific ability and the expected payoff to a major, those performing better in STEM than they

expected should be (weakly) more likely to pursue STEM, while those who receive a negative signal should

be less likely. If men are particularly overconfident and women are particularly underconfident about their

performance in STEM, receiving information should lead fewer men and more women to persist in the field.

Evidence from other settings has shown that it is possible to de-bias beliefs and change behavior

by providing more accurate information about performance. A lab experiment by Wozniak et al. (2014)
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provided relative performance feedback to participants and closed the gender gap in the choice to compete;

high-ability women increased and low-ability men decreased their likelihood of entering a tournament form

of compensation. In a field experiment, Hakimov et al. (2022) told French high school students applying

to college their rank in the national grade distribution, thus closing gender gaps in application behavior.

A similar experiment by Bobba and Frisancho (2019) in Mexico City found that providing information

on absolute and relative performance on a high school admissions test led students to have more accurate

beliefs and update their choice of high school track to be more in line with ability. Gonzalez (2017) found

that high school students revised their academic plans to take advanced coursework in response to being

told they had the potential to do well in Advanced Placement courses. Franco (2019) provided performance

feedback to Colombian students prepping for a college entrance exam; low-performing students appeared

to be discouraged by the information, reducing effort and the choice to take the exam. These studies imply

that it is possible to change educational choices by moving beliefs about performance and ability, but none

have shown this in the context of college students choosing a major.

Finally, there is a small but growing literature of interventions aiming to attract and retain students from

underrepresented groups in undergraduate economics programs. Li (2018) implemented an intervention

among introductory economics students that bundled several mechanisms: information about relative

performance, encouragement to major in economics, and information about the field of economics. As

a result, high-performing female students were more likely to major in economics, and low-performing

male students were less likely. However, the treatment arms varied by student gender and performance.

The experimental design of Li (2018) is such that it cannot separately identify the effects of performance

information versus information about economics for anyone, and cannot separate any of the three

mechanisms for high-performing women, who all received encouragement. Porter and Serra (2019) invited

recent alumnae to visit an undergraduate economics class to talk about their current jobs and the role

economics played in their careers. It had a large effect on female students’ likelihood of taking further
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courses and majoring in economics. The authors hypothesize that the positive effect on female students is

due to a role model effect, but it could also be due to a previous lack of information about economics-related

careers. Since the visiting speakers were all women, they also cannot isolate same-gender effects from

general role model effects. Bayer et al. (2019) sent incoming college students a welcoming email and

information about the field of economics, which increased the likelihood that an underrepresented student

enrolled in an economics course. However, they only targeted women, first-generation students, and

underrepresented minorities, so cannot say whether white and Asian men would react similarly. These

interventions have largely been limited to economics courses and students rather than a broader set of

male-dominated subjects, and there is more work to be done on precise mechanisms, but they prove that

fairly light-touch intervention can successfully affect major choice.

Taken as a whole, all of the above research provides support for a promising but largely untested

avenue of intervention. The theoretical and empirical evidence suggests that it is possible to update students’

beliefs by providing information about their relative performance, and that doing so could alter their choice

of academic major in a way that shrinks gender gaps in STEM. However, there is as of yet no causal evidence

isolating this mechanism in a real world college setting. Furthermore, existing evidence tends to come from

small samples, within a single field (e.g., economics), and have limited follow-up data.2 The current study

marries these literatures and provides the first and largest scale causal evidence across multiple STEM fields

and with several years of follow-up data.

2For example, some of the most well-cited studies are Wiswall and Zafar (2015), which has a sample size of
fewer than 500; Zafar (2013), which has a sample size 161; and Niederle and Vesterlund (2007), which has a sample
size of only 80. The previous three studies were conducted in a lab setting, so can only speculate about effects on
real-world decisions. The field experiment that is arguably closest to the current study is Li (2018), with N=450. The
field interventions by Li (2018), Porter and Serra (2019), and Bayer et al. (2019) all focus on economics students only.
Li (2018) and Bayer et al. (2019) each only report one year of follow-up data.
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3 Setting, Data, and Sample

The setting for this study is the University of Michigan - Ann Arbor (UM). UM is considered a

highly selective institution (its acceptance rate was 23 percent in 2019) and is the state’s flagship. It is a

large university, enrolling around 31,000 undergraduate students. I focus on 5,715 undergraduate students

enrolled in seven large introductory STEM courses in Fall 2019.3 The courses span seven departments and

subjects: biology, chemistry, computer science, economics, engineering, physics, and statistics.4

Students in these courses interact with an online platform called ECoach, which is a communication

tool designed to provide tailored information and advice to students in large courses. Its intention is to

substitute for the personalized one-on-one interactions between instructors and students that are not feasible

in courses with hundreds of students. The intervention is delivered through this platform, as are the student

surveys.

I use two main sources of data. The first is student administrative records from UM (University

of Michigan Office of Enrollment Management, 2022). These data contain all baseline demographic and

academic characteristics for the sample such as gender, race, class standing, declared major, standardized

test scores, high school GPA, and socioeconomic status. The data also contain students’ full academic

trajectories while at UM: course-taking, major declaration, and official grades. Because these are

administrative data, they contain full information on academic outcomes for all students. Some students

are missing information on pre-college characteristics such as high school GPA and parental education,

which is collected as part of the application process. This is because some information, such as parental

education, is self-reported, and some applicants, such as international and transfer students, do not submit

3A second round of the study, planned for the spring semester of 2020, was canceled due to the COVID-19
pandemic.

4The courses are: Biology 171 (Introductory Biology: Ecology and Evolution), Chemistry 130 (General
Chemistry: Macroscopic Investigations and Reaction Principles), Electrical Engineering and Computer Science
(EECS) 183 (Elementary Programming Concepts), Economics 101 (Principles of Economics I), Engineering 101
(Introduction to Computers and Programming), Physics 140 (General Physics I), and Statistics 250 (Introduction to
Statistics and Data Analysis).
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certain information.

The second source is a set of surveys that I administered to all students in the sample at two

points in time: one survey before the intervention and one after the intervention (University of Michigan

Center for Academic Innovation, 2019). Students took the pre-intervention survey between September and

November of 2019, and the post-intervention survey in December.5 In two of the eight courses (biology

and engineering), students received incentives in the form of course credit or extra credit for completing

the pre-intervention surveys; an additional four courses (computer science, physics, statistics, and one of

the economics sections) received indirect incentives, meaning they needed to complete the pre-intervention

survey to access subsequent tasks that offered extra credit. For all courses, taking the pre-intervention survey

was a necessary gateway to access most ECoach content.6 Three courses (biology, computer science, and

engineering) offered credit for the post-intervention survey.

4 Experimental Design

4.1 Intervention

The intervention consisted of two treatment arms, which I refer to as information-only and

information- plus-encouragement. The two treatment arms were delivered as online messages and emails

to students.7 The messages were sent a single time in the middle of the semester, at which point students

had turned in several assignments and taken at least one exam. The messages were timed to align with

the beginning of course selection and registration for the subsequent semester. (For a detailed timeline, see

panel (a) of Figure 1.)

5The pre-intervention survey remained open to students throughout the semester, but I drop any responses from
after the intervention. See Figure 1, panel (a) for a timeline of data collection.

6Students who did not respond to the pre-intervention survey could still receive emails sent from ECoach, so not
taking the survey did not preclude students from receiving the intervention message.

7This study, including an analysis plan, was pre-registered with the American Economic Association’s registry for
randomized controlled trials under RCT ID AEARCTR-0004644: https://doi.org/10.1257/rct.4644-1.0.
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The first treatment arm, the information-only intervention, provided students with information about

their performance relative to their classmates and to STEM majors. The message includes a histogram

showing the current distribution of grades in the course. The student’s own grade is highlighted and their

percentile is labeled (e.g., “You’re at the 75th percentile”). The graph also includes a call-out informing

students about the typical grade in the course for a STEM major (e.g., “STEM major median: B+”). All

of the key information in the chart—the student’s score and percentile and the median for STEM majors—

is repeated later in the message. The second part of the message gives further context about grades in the

course, listing the course median for all students, students who go on to major in the field associated with

the course,8 and (again) students who go on to major in STEM. The final part of the message includes a list

of links to set up advising appointments in various STEM departments (with the department the course is in

appearing first). Appendix Figure A.1 shows an example of an information-only message.

The second treatment arm, information-plus-encouragement, was sent to a random subset of

high-performing students, defined as those performing above the course median at the time of

randomization. It includes all of the same information as the information-only intervention. However,

it is framed in more positive language calling attention to the student’s strong performance (“You’re

performing like a STEM major!” rather than “Here’s how you’re doing”) and includes language explicitly

encouraging the student to consider or stay in a STEM major.9 Appendix Figure A.2 shows an example of an

information-plus-encouragement message. In designing a second treatment arm, I wanted to test whether the

framing of the information affected how students incorporated it. The findings of Li (2018), an experimental

intervention that bundled relative performance information with encouragement and information about the

8For biology, economics, computer science, and engineering, the associated major is just the field. For classes
where fewer than 10 percent of students go on to major in the subject, the message emphasizes multiple majors. The
physics and chemistry courses tend to serve many more engineering majors than physics or chemistry, so the associated
major is the subject or engineering. The statistics course serves students who ultimately major in many fields, so the
associated major is statistics, economics, or computer science—the most common STEM majors for students who take
the course.

9If the student indicated on the pre-intervention survey that they intended to major in a STEM field, they were
encouraged to stay in their major; if they did not (or did not answer) they were urged to consider a STEM field.
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field of economics, suggest that the encouragement aspect may be important for high-performing women in

particular but cannot disentangle the various components.10

Students already know (or can easily see) their score in the course, but generally are not told their exact

percentile. Information about historical course medians is available through an online system maintained

by the university, but this system reports only overall course medians and not medians specific to certain

populations like STEM majors. Furthermore, evidence from the pre-intervention survey suggests that

students do not have accurate beliefs even about the information that is readily available; less than a third of

students accurately identified the historical course median.

Students in the control condition received messages informing them of their current score, but no

additional information about their relative performance. The control messages reminded students that course

registration for the next semester was soon and contained the same advising links. I sent control messages

to limit any confusion or spillover among control students; the intention was that they would not wonder

why they did not also receive a message about their grades. Appendix Figure A.3 shows an example of a

control message.

4.2 Treatment Assignment and Take-up

I assigned treatment status at the student level, stratified by course, gender, and performance at the

time of randomization (above versus below the course median). This results in 8× 2× 2 = 32 strata.11

Within each of the 16 below-median strata, the probability of receiving the information-only treatment

was 0.5. Students who were above the median were eligible for the second treatment arm; within the

16 above-median strata, the information-only and information-plus-encouragement treatment were each

10Li (2018)’s intervention had a positive effect on high-performing women, who received relative performance
information, encouragement to major in economics, and information about the field of economics. Because these
three elements were bundled, it cannot identify which of the three mechanisms worked. Men did not receive any
encouragement, so the study also cannot say whether men and women respond differently to encouragement.

11Though there are seven courses with multiple sections each, the two economics sections operate independently
(notably for grading), so I considered them separately for randomization.
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assigned with probability 1/3. I chose these treatment probabilities to maximize statistical power across

the main and subgroup comparisons I was most interested in. To achieve a balanced sample in practice

and not just in expectation, I re-randomized until each pre-treatment characteristic is balanced within strata

(minimum p-value of 0.1). This randomization method resulted in 2,382 control students, 2,393 students

who received the information-only treatment, and 940 who received information plus encouragement.

Figure 1, panel (b) summarizes the experimental design.12

Students could receive the intervention in two ways. The first was an email that was sent directly

to their official university account. The second was from within ECoach, which students can visit at any

time to view relevant information and other messages about the course. There were some minor formatting

differences, but the content of these two delivery formats—including the visual element, the histogram—was

identical.

Among students who were sent a treatment message, 83 percent viewed it in some format. 57.5 percent

viewed the message only as an email, three percent saw the message only within ECoach, and 23 percent

viewed it in both formats.13 Women were more likely to view the message (in either form) than men: 85.5

percent of women compared to 81.2 percent of men. Note that because opening or scrolling through a

message does not necessarily indicate a close read of the content, I consider these view rates to be upper

bounds for “receiving” the information.14

12Fifteen percent of the sample were enrolled in more than one of the included STEM courses. To account for this, I
randomly chose (with equal probability) which of their courses they would be considered in for the experiment. Within
that course, they were assigned to a treatment condition like everyone else. For their other courses, they received no
message (not even a control message).

13I was able to track email views via a hidden pixel in the intervention message, and ECoach views via site
metadata.

14I further examine whether certain types of students were more likely to read the intervention messages by
regressing receipt of the message (in any form) on all pre-treatment characteristics, as well as the course the student
is in and whether they were performing above the course median (included as Appendix Table A.1). Conditional on
all other covariates, women, high-performing students, Black students, and those in the statistics, computer science,
biology, and engineering courses were most likely to view the messages.
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4.3 Sample Characteristics and Balance

Table 1 summarizes demographic and academic characteristics by treatment status. This table also

tests for balance on pre-treatment characteristics between control students and treated students.15

The total experimental sample includes 5,715 students, of whom slightly under half (48 percent) are

women. The majority of students (55 percent) are White. A large proportion (27 percent) are Asian, while

smaller numbers identify as non-Black Hispanic (seven percent) or Black (three percent). The sample

demographics largely reflect the demographics of the university, though male, White, and Asian students

are overrepresented in these STEM courses compared to the university as a whole. The majority of students

have first year or sophomore standing (42 and 40 percent, respectively).16 The average UM student and the

average student in this sample come from a socioeconomically advantaged background: 60.5 percent have

a parent with a graduate or professional degree, and only 15 percent are first-generation (meaning neither

parent has a bachelor’s degree). The majority (64 percent) have family incomes above $100,000. Roughly

half of the sample (52 percent) are Michigan residents.

The average cumulative GPA while at UM is 3.41 (students in their first semester do not yet have

values for this variable). UM is a highly selective school, and this is reflected in the high average test scores

(e.g., 710 out of 800 on the SAT quantitative section) and high school GPA (3.88 average). A large majority

(83 percent) took calculus in high school. At the time of randomization, the majority of students (56 percent)

had not officially declared a major. Of those who had declared, most were engineering majors (23 percent

of the full sample). Nine percent were in a non-engineering STEM major, and 11 percent had declared a

non-STEM major.17 Based on beginning-of-semester survey data (not shown), 72 percent of women and 85

15Table 1 pools students receiving either treatment; a balance table that separates the two treatment arms is
presented in Appendix Table A.2. I also test for balance separately by gender in Appendix Table A.3.

16Technically, UM measures class standing based on credits accumulated, so that, for example, some students
classified as sophomores may be first years with enough credit (from previous courses, transfer, AP, etc.) to count as
sophomores.

17Engineering is its own college and prospective engineers are admitted directly into the program as incoming first
years, meaning engineering majors enter UM already declared. Many eventual science, humanities, social science,
and other popular majors appear as undeclared during their first and second year, until they meet major prerequisites
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percent of men enter these courses intending to pursue a STEM major.

I test for treatment-control balance on each pre-treatment characteristic, as well as for the proportion

of students missing information on each characteristic, with a regression of the characteristic on treatment

status, controlling for strata. I find one significant difference out of 36 tests, fewer than would be expected

by chance. Treated students have an average ACT reading subscore that is 0.1 points lower on the 36-point

scale, which is substantively small. I also test for whether the characteristics jointly predict treatment status,

again controlling for strata; the p-value from this F-test is 0.836.

The highest proportion of students are in the statistics and chemistry courses (26.9 and 19.7 percent,

respectively), and the lowest number are in engineering and physics (7.9 and 5.7 percent, respectively);

these proportions reflect differing enrollments. The full breakdown of the sample by course and gender is

available as Appendix Table A.4.

4.4 Survey Response

Around three quarters of students responded to the pre-intervention survey, while slightly fewer than

half (48.7 percent) responded to the post-intervention survey.18 Crucially, survey response does not vary by

treatment status. While there is non-random selection into survey response, the selection is similar in the

treated and control groups.

I test for differences in survey response by pre-treatment characteristics by regressing an indicator for

post-intervention survey response on the full set of observed pre-treatment characteristics (Appendix Table

A.6). I focus on the post-intervention survey here, since I estimate treatment effects on post-intervention

variables. Women were seven percentage points more likely to respond to the post-treatment survey.

Higher-performing students (those in the top half of their course at the time of randomization) had higher

and apply for the major.
18I show item-level response rates for the items used in my analysis as Appendix Table A.5. The item-level response

rates to the post-intervention survey range from 41.3 percent (for beliefs about own performance) to 46.6 percent (for
intended major).
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response rates, but the gender-by-performance interaction is not significant. Students with higher prior

achievement, students in the statistics and engineering courses (recall that instructors in these courses offered

extra credit for both surveys), engineering majors, younger students, and Asian students were also more

likely to respond to the survey.

Survey response is independent of estimated treatment effects on course-taking and major choice

outcomes, which use administrative data. However, survey non-response could affect the internal and

external validity of analyses using survey outcomes. To asses internal validity of analysis using survey

outcomes, I run the same balance tests as in Section 4.3, this time conditional on responding to the

post-intervention survey. These results, shown in Appendix Table A.7, indicate that all pre-treatment

characteristics remain balanced when I limit to survey respondents (p-value from joint F-test = 0.943). The

other potential concern is that any analysis done using survey data does not generalize to the full sample. To

address this, I run two robustness checks, reported below. In the first, I re-estimate effects on survey belief

outcomes using inverse probability weighting to make survey respondents resemble the full sample on their

observable characteristics. In the second, I estimate treatment effects on administrative data outcomes using

only the sample who responded to the survey. In both cases, I lose precision but the point estimates are

similar.

5 Empirical Method

For my experimental analysis, I estimate the main effect of the intervention with the following

specification:

Yi = β0 +β1Treati +γX′
i+δs + εi (1)

where Treati indicates assignment to the either treatment, Xi is a vector of pre-treatment covariates

(everything listed in Table 1), and δs are indicator variables for all but one of of the 32 gender-by-
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course-by-above-median strata. (I also report estimates without covariates in the appendix.) In this

specification, β1 is the estimated intent-to-treat (ITT) effect, or the effect of being sent an intervention

message, for all students. Scaling the ITT by the inverse of the message take-up rate (1/0.83 = 1.2) gives the

effect of treatment on treated students (TOT).

To estimate effects by gender, I add in an interaction for female students:

Yi = β0 +β1Femalei +β2Treati +β3Femalei ·Treati +γX′
i+δs + εi (2)

Here, β2 gives the treatment effect for men; β2 +β3 gives the effect for women.

In most reported results, I pool the two treatment arms together and estimate a single treatment

effect. The estimated treatment effects are therefore an average of the information-only and

information-plus-encouragement treatments. To separately estimate and compare effects of the two

treatment arms, I limit the sample to above-median students, who were eligible for the second treatment

arm, and estimate:

Yi = β0 +β1In f oi +β2Encouragei +γX
′
i+δs + εi (3)

where In f oi indicates assignment to the information-only treatment, Encouragei indicates assignment to the

information-plus-encouragement treatment, and everything else is as above. I also estimate the effect of the

two treatment arms by gender with a specification analogous to Equation 2 (where I include indicators for

each treatment and interactions between each treatment and gender).

In all analyses, I estimate ITT effects, or the effect of being sent an intervention message. I

estimate effects on students’ beliefs about their relative performance using outcomes measured in the

post-intervention survey. I estimate treatment effects on course-taking (number of STEM credits) and

major choice (declaration of a STEM major) based on administrative transcript data. I investigate additional

mechanisms using outcomes and characteristics collected in the survey and available in administrative data.
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All results report robust standard errors and significance levels.

5.1 Outcome measures

I measure beliefs about relative performance in two ways. The first is how accurately students perceive

their own relative rank in the course, measured by comparing what they predict their final percentile will

be to their true percentile.19 I do this at two points in time to see how beliefs change over the course of

semester. I show this visually and also report average errors in beliefs; I report both the absolute value as

well as a signed error to convey the direction of the error.

My second measure of beliefs about relative performance focuses on what students believe about

STEM majors. I ask students what they think the median grade in their course is among students who go

on to major in a STEM field; I can then compare their answers to the true median.20 This measure captures

how difficult students perceive the course to be, how well they think they must do to pursue STEM, and

(implicitly) how they compare to other STEM majors.

My primary behavioral outcomes are course-taking, operationalized as the number of STEM credits

attempted, and STEM major declaration. I have five semesters of follow-up data (through the spring 2022

term) and show treatment effects by semester. I classify courses by two-digit Classification of Educational

Program (CIP) code, developed and maintained by the U.S. Department of Education’s National Center for

Education Statistics.21 These outcomes come from the administrative data; attrition or missingness occurs

19The survey item asks students to fill in a value from 1 to 100: “In terms of my final grade, I expect I will do
better than ____% of my classmates in [course].” This survey item is not incentive-compatible, meaning students are
not incentivized to give an accurate prediction. Note that doing so would itself constitute a treatment and could cause
students to update their beliefs. The fact that control students nonetheless update reported beliefs over time suggests
that the responses capture real beliefs despite not being incentivized.

20The survey item asked, “When thinking just about students who declare a major in math, science, engineering, or
economics, what do you think was their median grade in [course]?” The true course medians for STEM majors for the
seven courses are: B for Biology, Chemistry, and Physics; B+ for Economics and Statistics; and A- for Engineering
and EECS. I calculate these using historical administrative data on students who took each course in the 2015 through
2017 academic year and who declared a STEM major within three terms of taking the course.

21I code the following subjects (CIP codes) as STEM: natural resources and conservation (03), computer and
information sciences (11), engineering (14), biological and biomedical sciences (26), mathematics and statistics (27),
physical sciences (40), and economics (45.06). I code economics (45.06) separately from the rest of the social sciences
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only if a student graduates or drops out. If a student graduates with a degree in a STEM field, they are coded

as a declared STEM major for all subsequent semesters.22

6 Results

6.1 Control Students’ Beliefs about Relative Performance

To motivate the experimental results, I begin by describing students’ beliefs in the absence of any

intervention. In this section, I focus on control students only. I examine control students’ beliefs at two

points in time: at the beginning of the semester (generally in September) and again at the end of the

semester (December). In my descriptive analyses of student beliefs, I limit the sample to control students

who responded to both surveys to avoid any confounding changes due to differential response over time.

Control students begin the semester inaccurately predicting their performance.23 The average control

student overpredicts by 15.9 percentile ranks, meaning they expect to perform considerably better than they

actually do. Because some students underpredict (a negative error), the average absolute value error is even

larger in magnitude: 28 percentile ranks. There are significant differences by gender and performance.

The average man assigned to the control condition overpredicts his final performance by 18.2 percentiles,

while the average woman overpredicts by 13.7 (all reported differences are statistically significant).

Low-performing (below-median) students tend to overestimate their performance (by 30.6 percentiles),

while high-performing ones tend to underestimate, though to a lesser extent (average underprediction of

2.7 points).24 Low-performing men are the most overconfident (overpredicting by an average of 34.4

(45).
22If a student does not show up in the data in a given term, I code them as taking zero credits and courses. Fewer

than two percent of control students do not appear in the data in the semester following the intervention.
23Students responded to the pre-intervention survey between September and November. Over 80 percent responded

in September and nearly 90 percent took the survey before the first exam in their course. When first asked to predict
their performance, they would have had limited feedback.

24Whenever I group students by high-performing (above-median) and low-performing (below-median), I use
performance measured in the middle of the semester, at the time of randomization.
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percentiles, compared to 27.2 for low-performing women) while high-performing women are the most

underconfident (underpredicting by 5.9 percentiles compared to less than a percentile for high-performing

men). Panel (a) of Figure 2 visully summarizes the accuracy of these beginning-of-semester predictions by

gender and realized performance.

Even absent intervention, we would expect students to update their beliefs over the course of the

semester as they learn about their performance through exams, assignments, and other feedback. At the end

of the semester (right before final exams), control students’ predictions are more accurate than they were at

the beginning. The average student still overpredicts, but by less: 5 percentiles compared to 15.9 at the start

of the semester. Compared to an absolute value error of 28 percentiles at the beginning of the semester, the

average control student’s absolute error at the end of the semester is 19.2. The fact that the change in the

signed error is similar to the change in the absolute value of the error suggests that it is primarily the students

who were initially overpredicting who updated. Though both men and women have updated, a gender gap in

beliefs remains: the average man assigned to the control condition overpredicts his final performance by 6.6

percentiles, while the average woman overpredicts by 3.4. The gender gap among low-performing students

is only slightly smaller compared to the beginning of the semester: below-median men are 5.4 percentiles

more overconfident than women (15.2 vs. 9.8). The gender gap among high-performing students has shrunk

to 2.7 percentile points and is not statistically significant. These changes are reflected in Panel (b) of Figure

2.

I next turn to what students believe about the performance of STEM majors. Panel (a) of Figure 3

summarizes how well students can identify the STEM major course median at the beginning of the semester,

by gender. At the outset of the course, 33 percent of men and 27 percent of women accurately report the

median. Men are much more likely to underestimate the median (30 vs 19 percent), while women are much

more likely to overestimate (53 vs 36 percent). Note that in this case, underestimating means a student thinks

their (potential) peers are doing worse than they actually are; overestimating means the student thinks others
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are doing better than they are. In other words, this suggests that women may believe the bar for majoring in

STEM to be higher than men do.

Control students’ beliefs about this median change little over the semester (Figure 3, Panel (b)). This is

unsurprising; though they learn about their own performance and, to a lesser extent, that of their peers, they

receive no direct information about STEM majors’ grades in particular. By December, when they respond to

the post-intervention survey, 26 percent of control men and 17 percent of women underestimate the median;

36 percent of men and 55 percent of women overestimate. Low-performing men are the most likely to

underestimate the median (32 percent), while high-performing women are the most likely to overestimate

(69 percent).25

The two sets of findings about control students’ beliefs—about their own relative rank and about

the performance of other STEM majors—work in the same direction, and support a story of relative male

overconfidence and female underconfidence. This may be part of the explanation for differential rates of

STEM enrollment and persistence. In the semester following the course, control men took an average of

two STEM credits more than women. (A single STEM course is usually four credits, so this represents half

of a course.) By five semesters later, men are 14 percentage points more likely to be declared as STEM

majors.

Though consistent with gender differences in confidence explaining gaps in persistence, this

relationship is correlational and does not account for the myriad factors which may differ by gender. To

investigate more systematically whether beliefs about relative performance are related to the gender gap

in course-taking and major choice, I perform a decomposition following Gelbach (2016). This accounting

25Students also responded to questions about their beliefs on the overall course median (for all students) and the
course median for students who major in the subject affiliated with the course (e.g., the Econ 101 median among
students who declare an economics major). Beliefs about the median grade for subject majors are similar to beliefs
about STEM majors. For beliefs about the overall course median, all students are much more likely to underestimate,
but the differences by gender are much smaller. Among control men, 55 percent underestimate, 33 percent are accurate,
and 12 percent overestimate the overall median at the end of the semester. Among control women, the proportions are
50, 35, and 15 percent. The negligible gender differences in overall median beliefs imply that it is not the case that
men and women have different beliefs about grades or grade inflation generally. Rather, they hold different beliefs
about the selection into STEM, with women setting the bar for STEM higher.
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exercise uses the omitted variable bias formula to partial out how much the addition of a variable to a

regression changes some base coefficient—in this case, the coefficient on female, which represents the

gender gap.26

I apply the decomposition to a model where I regress STEM persistence outcomes on a female

indicator, demographic and academic controls (those listed in Table 1), the student’s final percentile rank

in the course, their prediction of their final percentile, and indicators for whether they are under- or

overestimating the median course grade for STEM majors. I examine the gaps in two outcomes: number

of STEM credits in the semester following the course, and the likelihood of being declared as a STEM

major five semesters later. Although this approach shows the relationship between beliefs and behavior after

controlling for a number of potentially confounding factors, I do not assign a causal interpretation to these

results; rather, I use them as motivating evidence for my experimental analysis. Only control students who

responded to both surveys are included in this exercise.

The results, in Table 2, show that the full set of belief, performance, academic, and demographic

variables account for roughly half of the observed gender gap in credits (2.15 credits in this sample) and

more than 60 percent of the 14-point gap in major choice. Students’ beliefs about their own course percentile

explain around two percent of the gender gap in credits, and beliefs about the course median for STEM

majors explain an additional 5 percent. Together, the beliefs measures account for seven percent of the total

gender gap—the same amount explained by their college math placement score. The decomposition of the

gap in major choice produces even stronger conclusions, with the two types of beliefs statistically explaining

15 percent of the gap.

My results thus far demonstrate that women and men have systematically different beliefs about their

relative performance in STEM courses, and that even conditional on true performance and a rich set of

26An advantage of this approach relative to one that progressively adds covariates is that it is not sensitive
to the order in which covariates are added. The Gelbach decomposition is conceptually similar to a
Kitagawa-Oaxaca-Blinder decomposition, and in fact is equivalent once interactions between the covariates and gender
are included.
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academic and demographic covariates, these beliefs are related to the gap in STEM persistence. My study is

one of very few that can connect beliefs about consequential real-world performance to observed, real-world

outcomes, and the largest-scale study in the context of postsecondary specialization. Furthermore, I show

that students’ beliefs about the performance of other STEM majors is consequential for the STEM behavior

gap; no other studies have measured this belief, which may be particularly subject to information frictions

and particularly salient for major choice decisions.

However, even accounting for a rich set of controls, this relationship is correlational. The measured

beliefs may be picking up some omitted factor that is actually responsible for behavior, and correlations

between the covariates make the magnitudes hard to interpret. To isolate the causal role of relative

performance beliefs, my experiment will exogenously change beliefs and study how academic decisions

change as a result.

6.2 Effect of Intervention on Student Beliefs

The intervention aimed to change students’ behavior by correcting their beliefs about their relative

performance. I estimate treatment effects on students’ beliefs using survey measures of relative performance

beliefs similar to those described in Section 6.1. The first measures the accuracy of students’ beliefs about

their own relative performance by subtracting the student’s true percentile from what they estimate their

percentile to be at the end of the semester. Here, I use mid-semester performance as the realized percentile,

because end-of-semester performance could itself be affected by the intervention if students adjust their

effort. I test for effects on performance directly in Section 6.5.27 I report both an absolute value measure as

well as a signed measure that captures the direction of the error. Second, I measure the accuracy of beliefs

about the performance of STEM majors by creating two indicator variables for whether a student is over- or

27I also estimate effects on a version of the percentile belief outcomes using final performance rather than
mid-semester performance as the realized performance (Appendix Table A.8). The signs are similar but the magnitudes
somewhat smaller. This is not surprising given that the intervention told students their mid-semester percentile; they
updated their beliefs in the direction of the signal they received.
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underestimating the course median for students who go on to major in STEM.

Table 3 shows treatment effects on beliefs outcomes, for the full sample as well as separately for men

and women.28 Effects on the absolute value of the error in predicted percentile indicate that the average

student correctly updates their prediction by approximately 1.5 percentiles. (A negative treatment effect

means the error is getting smaller.) This appears to be driven by men updating: they correct their beliefs by

2.2 percentiles, while women’s absolute error shrinks by a statistically insignificant 0.7 percentiles (though I

cannot reject that men and women’s beliefs change by the same magnitude). The gender gap in this measure

among control students is 2.7 percentiles (20.3 for men minus 17.6 for women), so the covariate-adjusted

gap in the absolute value prediction closes by half.

When I look instead at the signed error in percentile beliefs, I find no average treatment effect overall

or for either gender. However, the fact that the absolute value of the error changes implies that this null

finding is masking belief updating that goes in both directions. This can be seen in Panel (a) of Figure 4,

which shows that both over- and underconfident men update their beliefs as a result of the treatment. This

is reflected by the line through the treated points shifting closer to the 45-degree line, relative to the control

men. For women, on the other hand, the treated and control trends are indistinguishable, showing that the

treatment did not cause women to update their beliefs about their percentile rank, on average. I test for

heterogeneity in beliefs more formally in Section 6.4.

The estimated effects on students’ beliefs about the median course grade for STEM majors indicate

that the intervention also closed part of the gender gap in this second type of belief (bottom panel of Table

3). Receiving the informational intervention made men 5.2 percentage points less likely to underestimate

the median and made women 5.1 percentage points less likely to overestimate. The gender gap in

underestimating among control students is 9.8 percentage points (with men more likely to underestimate)

and the control gap in overestimating is 17.7 percentage points (with women more likely to overestimate).

28Treatment effects on beliefs outcomes estimated without covariates are included as Appendix Table A.9. The
results are very similar.
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Comparing control and treatment gender gaps, the treatment closes the gap in both measures by roughly a

third. Both changes suggest that men are becoming less overconfident relative to women, though the gender

differences in treatment effects do not reach conventional levels of statistical significance.29

6.3 Effect of Intervention on STEM Persistence

Figure 5 summarizes the effect of the intervention on students’ course-taking (number of STEM

credits, shown in panel (a)) and major choice (panel (b)), with treatment effects estimated for each available

post-treatment semester. (A table of estimated effects, standard errors, and control means appears as

Appendix Table A.11.) I find a small negative effect (-0.28 credits or three percent) of the intervention on

men’s course-taking in the semester immediately following the intervention. However, the effect disappears

in later semesters, and none are statistically distinguishable from the effects for women. I also estimate a

negative effect (-0.39 credits or six percent) for women in the fourth post-intervention semester. I find little

evidence that either men or women changed their choice of major; although all point estimates are negative

(except for one estimate that is zero to three decimal places), none are statistically significant.30 However,

the results are somewhat imprecise. The 95 percent confidence intervals on major choice five semesters

post-intervention imply that I can’t rule out positive effects as large as 1.9 percentage points for women (3.6

percent relative to the control mean of 51.8 percent) or negative effects as large as -4.7 (-9 percent). For

men, the confidence interval ranges from -3.9 to 2 percentage points (-5.6 to 2.9 percent, off a control mean

of 69.5 percent).

29As a robustness check, I re-estimate treatment effects on relative performance beliefs, adjusting for survey
response using inverse probability weights that reflect how likely a student is to respond to the survey based on
their observable characteristics. In this exercise, survey respondents who closely resemble non-respondents are given
more weight. The results are included as Appendix Table A.10. The point estimates are similar to the ones in Table 3,
though somewhat less precise.

30Treatment effects on STEM course-taking and major choice estimated without covariates are included as
Appendix Figure A.4. The results are very similar. I also include treatment effects estimated using only students
who responded to the post-intervention survey, in Figure A.5. Again, the results are similar. This exercise, along
with Appendix Table A.10, suggests that differential survey response is not leading to a spurious conclusion about the
relationship between changes to beliefs and changes to behavior.
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For high-performing students, who were eligible for the second treatment arm, I test for differential

effects on STEM course-taking and major choice by treatment arm (Appendix Table A.12) but find none, for

women or men.31 Since I find no evidence of a differential treatment effect, for the remainder of the paper I

combine the treatment arms and consider the effect of receiving any type of informational treatment. Recall

that all treated students received the same informational content; the only difference between the arms was

whether the information was framed in a neutral or positive way.

6.4 Heterogeneity by Pre-Intervention Beliefs

We might expect that students who were initially overconfident about their relative performance and

for whom the informational intervention contained bad news to react differently than those who received

good news. To better understand how the intervention caused updating to beliefs and behavior, I estimate

heterogeneous treatment effects based on students’ initial beliefs in the pre-intervention survey. Since I have

two measures of beliefs, I examine two types of prior belief heterogeneity.

First, I categorize students’ initial beliefs about their percentile by whether they were initially

underpredicting their percentile (meaning they received good news), or initially overpredicting (meaning

they received bad news).32 It is important to note that initial beliefs are measured (for most students) in

September, and the treatment tells students their percentile as of November. I do not observe their beliefs at

the precise time of treatment. It is likely that students have updated in the first half of the semester, which

could mute estimated heterogeneity by initial beliefs. Second, I group students by the accuracy of their

initial beliefs about the median course grade for STEM majors: initially accurate, initially overestimating the

31I designed a three-armed experiment assuming I would have two semesters of students in my sample. The
cancellation of the second round due to the pandemic left me with half of my planned sample size and less statistical
power to distinguish between treatment arms.

32I compare students’ prediction of their percentile, which they make at the beginning of the semester, to their
percentile at the time of the intervention, mid-semester. The mid-semester percentile is what treated students are told
as part of the intervention.The small number of students who accurately predict their percentile (N=43) are grouped
with those who underpredict.
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median, or initially underestimating. All of these results rely on survey data with considerable missingness,

so should be interpreted with some caution.

Table 4 shows differences in belief updating for students with different initial beliefs. Panel A shows

how belief updating differs by initial under- vs. over-prediction of their own percentile. The patterns in

own-percentile belief updating do not show the expected pattern. Both those who got good news as well as

those who received bad news updated their percentile beliefs slightly upwards, and none of the effects (or

differences between effects) are statistically significant. Students who were initially underconfident about

their percentile adjusted their belief about the course median downward (10.5 percentage points less likely to

overestimate); though these are different measures, the pattern is consistent in that underconfident students

(in terms of percentile beliefs) updated in a way that corrected underconfidence (in terms of median beliefs).

Similarly, students who were initially overpredicting their percentile and received bad news corrected their

belief about the median in a way that corrected overconfidence, becoming 4.7 percentage points less likely

to underestimate the median. I cannot reject equality of effect by gender for any of the effects.

In Panel B of Table 4 , I group students by the accuracy of their initial beliefs about the median course

grade for STEM majors: initially accurate, initially overestimating the median, or initially underestimating.

A student who was initially overestimating the median would have received good news, since their own

relative position is better than they thought. While some of the results imply that students correctly updated

(e.g., men who were initially underestimating the median adjusted that belief downwards), others do not.

For example, initially accurate and underestimating women became less likely to overestimate the median.

I also lack the statistical power to say whether men and women update differently.

In Table 5, I examine the same heterogeneity but with major declaration five semesters

post-intervention as the outcome. These results are suggestive that the initially overconfident students, who

received bad news about their relative performance, may have reacted by switching out of a STEM major.

By five semesters later, treated students who had initially overpredicted their percentile were 3.6 percentage
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points less likely to be declared as a STEM major than equivalent control students. The point estimate is

larger for women (-4.9 vs. -2.5 percentage points), but I can’t reject that it’s statistically equivalent. I also

find weak evidence that men who got bad news about the course median for STEM majors were less likely

(by 5.4 percentage points) to be a STEM major as of the last follow-up, though again I cannot reject the

possibility that women responded equally.

Taken together, the estimated effects of the informational intervention on students’ beliefs and

subsequent behavior provide limited support for the hypothesis that gender differences in confidence explain

different rates of STEM persistence and that information can address the problem. Though the gender

differences in beliefs are stark and the intervention does change some students’ beliefs, short-term effects of

information provision are small, and there are no changes to the longer-term gender gap in major choice. If

anything, the point estimates suggest that some women and men may have been discouraged from studying

STEM, which has ambiguous welfare implications.

6.5 Intermediate Outcomes and Heterogeneity

Much of the prior research on feedback provision, in academic and other settings, has focused on

effort and performance as an outcome (Ashraf et al., 2014; Azmat et al., 2019; Azmat and Iriberri, 2010;

Bandiera et al., 2015; Dobrescu et al., 2019; Goulas and Megalokonomou, 2015; Tran and Zeckhauser,

2012). Understanding how students adjust their effort in response to feedback is important for educators

who care about improving performance, and could also be a mechanism through which the intervention

changes students’ behavior. Students who received a negative shock to their beliefs might decrease their

effort due to a discouragement effect; on the other hand, they might increase effort if they realize their

performance is not adequate for a STEM major.

I estimate treatment effects on two performance outcomes: final exam and final course scores, both
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measured as percent scores out of 100 (Table 6).33 There is no evidence that the intervention affected

performance for men, women, or students as a whole. Although the point estimates for both final exam and

final course performance are negative for men (-0.013 and -0.141, respectively), the lower bounds of the

95 percent confidence intervals imply that men could have at most decreased their final exam and course

performance by less than a percentage point, suggesting effort and performance were not a key mechanism

through which changing beliefs affected behavior.

The intervention could change students’ beliefs about their ability to succeed in STEM, which could

serve as an intermediate channel between their beliefs about their performance and their behavior. To

measure this, I construct an index capturing students’ beliefs about their ability to succeed in STEM,

which aggregates responses to items about their grades being “good enough” for STEM, a series of

STEM-self-efficacy items, and items about identifying with being a “math person” or “science person”.34

The results are included as the middle left panel of Table 6. The effects of the intervention on this success

index are small and insignificant: positive 0.013 standard deviations for men, 0.035 standard deviations for

women, and no detectable difference by gender.

By calling attention to grades and academic performance, the intervention may have increased

students’ academic stress levels, a possible mechanism to explain the somewhat negative effects on

course-taking and major choice. To test this, I estimate treatment effects on a subjective measure of grade

stress: a standardized version of an item asking students to rate their general stress and anxiety level about

their academic performance and grades. (A higher value indicates higher stress.) The bottom right panel of

Table 6 shows no change to students’ stress about grades, overall or by gender.

As additional intermediate outcomes, I examine short-term subjective interest in STEM, measured in

33One course, EECS 183, had a final project in lieu of an exam, so I use scores on that for the final exam measure.
One section of the economics course allows students to opt out of the final exam (they can drop their lowest exam
score, so many choose not to take the final), so I do not include it in my analyses of final exam performance.

34The index is constructed following Kling et al. (2007), where I standardize each variable using the control group
mean and standard deviation, impute missing values (for individuals with at least one valid index component) with the
treatment-assignment group mean, and then take the unweighted mean across the standardized, imputed components.
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two ways. The first is simply whether a student stated in the post-intervention survey that they planned to

major in a STEM subject. The second is an index aggregating stated intentions and interests, which I refer

to as a STEM interest index. It combines items about general interest in STEM, intention to seek academic

advising in a STEM field, and intention to take subsequent STEM courses.35 As shown in the bottom of

Table 6, I find small, negative, statistically insignificant effects on subjective STEM intent and small negative

effects on STEM interest. The effects on the STEM interest index are negative for both men and women

(-0.045 and -0.085 standard deviations, respectively), and the effect is more negative for women. However,

both effects are small (less than one tenth of a standard deviation) and I cannot reject that they’re equal. This

aligns with the negative (though statistically insignificant) effects on ultimate major declaration (see Figure

5, panel (b)).

Appendix Tables A.13 through A.16 report estimated effects on STEM persistence by a number of

pre-treatment characteristics, including student level (first year or sophomore vs. junior or senior), intended

major, course subject, instructor gender, and gender composition of the course. The heterogeneity results

imply that students who we would expect to be on the margin of specializing in STEM—younger students

and students already interested in STEM—are the ones who change their behavior, at least in the short term

(Appendix Table A.13). However, I lack the statistical power to reject equality in effects across groups.

In terms of course subject, I find that students in the computer science and statistics courses decreased

their STEM course-taking and major declaration by the most (Appendix Table A.14). However, by splitting

the sample into seven subjects, I don’t have the power for subject-by-subject comparisons.

I find no significant differences by instructor gender (Appendix Table A.15) or gender composition of

the course (Appendix Table A.16), though this analysis is again underpowered due to the loss of sample size

from the cancellation of the second round of the study.

35Like with the STEM success index, the construction of the interest index follows Kling et al. (2007).
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7 Discussion

One of the most striking findings of this study is a descriptive one: men are significantly more

overconfident and women more underconfident about their relative performance in STEM courses. A

natural question arising from the observed gender differences in beliefs—absent intervention—is how those

beliefs are formed and why they persist. One possibility is that students are incorporating signals from

other sources like standardized test scores and previous coursework, and men have received signals that are

more positive than women. I can investigate this in the data, and while men are more likely to have taken

calculus in high school and have higher quantitative test scores, controlling for all of these factors does

not change the gender gap in beliefs. Theory paired with lab-based studies of belief updating suggest that

exaggerated stereotypes about groups (e.g., men are much better at quantitative subjects) can persist despite

very small true differences, due to people using mental shortcuts to make predictions about themselves or

others (Bordalo et al., 2016). This would explain men overestimating and women underestimating their own

quantitative ability.

I find that students do correctly revise their beliefs when provided with information. Both men

and women correct their beliefs about how other STEM majors perform. Men but not women correct

their beliefs about their own relative course rank. This somewhat mixed finding is part of a somewhat

mixed prior literature. Although some studies have found that women tend to update more conservatively

than men (Buser et al., 2018; Mobius et al., 2014; Coutts, 2019) and that people update less when the

information is about a gender-incongruent domain (Coffman et al., 2019), others find the opposite (Goulas

and Megalokonomou, 2015; Owen, 2010). The patterns by prior beliefs are broadly but not fully consistent

with belief updating, with an overall pattern of initially overconfident students decreasing their STEM

persistence in response to bad news. Again, the literature is mixed on asymmetric updating, with some

finding people react more strongly to bad news than good news (Coutts, 2019) and others finding the opposite

(Mobius et al., 2014).

32



Though women update in a way suggesting an increase in their relative performance beliefs, they do

not become more likely to persist in STEM. If anything, some women (along with some men) may have been

discouraged. Understanding why women’s choices are largely unmoved is critical to fully understanding

gender differences in field choice. Even a large shock to beliefs about ability may not be sufficient to change

behavior if a student is far from the margin due to strong underlying taste (or distaste) for STEM, strong

non-STEM ability, or if frictions such as stereotypes or confirmation bias prevent them from incorporating

the information.

A leading explanation is that women have a comparative advantage in non-STEM, which remains

even after revising STEM beliefs (Breda and Napp, 2019). Gender differences in STEM and non-STEM

performance support this: although control men and women in the sample have indistinguishable GPAs in

their college STEM courses, women do significantly better in non-STEM subjects. It could also be the case

that factors other than academic beliefs matter most for women. Using survey data to estimate a structural

model, Zafar (2013) finds that gender differences in preferences and tastes, rather than confidence about

academic ability, explain the gap in major choice. Recent interventions by Porter and Serra (2019), Li

(2018) and Bayer et al. (2019) also suggest that factors such as information about and interest in the field

and the presence of female role models can affect women’s choices.

Finally, it could be true that while women care about their performance, their relative rank or their

performance compared to other STEM majors is less salient than it is for men. This hypothesis is supported

by research finding that men have stronger preferences for competitive environments and respond more to

information about the competition they face (Niederle and Vesterlund, 2011; Buser et al., 2014; Berlin and

Dargnies, 2016). On the other hand, Fischer (2017) finds that women are more responsive than men to the

composition of their peers, with women being less likely to persist in STEM if they are quasi-randomly

assigned to an introductory chemistry course with higher-ability peers (and no effect for men). While

Fischer’s (2017) finding that low-performing students are discouraged by high-ability peers is consistent
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with the negative effects I find for students receiving bad news, the differences by gender in her study are

inconsistent with the lack of gender differences I find.

There are several other explanations for the lack of effects I find, which I cannot fully rule out. First,

the information I provided was about relative performance, which by definition is about two things: a

student’s own performance and that of their peers. Put differently, relative performance feedback also

provides a signal about course or major difficulty; learning that a student is doing relatively better than

they thought could also be interpreted as learning that a course is more difficult than they thought. Recent

evidence suggests that students prefer less difficult majors (Ersoy and Speer, 2023). Good news about an

underconfident student’s own performance in STEM may be counteracted by bad news about how difficult

STEM is. Second, though the intervention was designed to provide information about aptitude in STEM

courses specifically, students may have interpreted it as information about general ability. If they revised

their beliefs about their general rather than STEM ability, we wouldn’t expect major choice to change.

Unfortunately, I only measure students’ beliefs about their relative STEM performance, so cannot provide

evidence for or against this explanation.

Beliefs about oneself and stereotypes about academic subjects and occupations are formed over a

person’s entire life, with gender differences emerging in children’s own beliefs as young as age six (Cvencek

et al., 2011; Bian et al., 2017). Students’ beliefs, performance, and choices are influenced by their early

environments, including the gender stereotypes held by their parents and teachers (Carlana, 2019; Jacobs,

1991). One explanation for my lack of positive effects is that the period of postsecondary education may

be too late to correct underconfidence learned over a lifetime, and providing information may backfire

by reinforcing stereotypes for lower-performing women. Intervening earlier may be more successful in

changing beliefs and behavior.

Features of the intervention itself may explain its lack of more positive effects. Although some of

the information students received (e.g., course grades of median STEM majors) was novel, the information
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as a whole may not add much relative to what they already know via instructors and publicly-available

information. Students may have ignored or disregarded the content due to method of delivery—online,

through a learning management system, a single time—and may respond better to information delivered

in-person, multiple times, and/or coming directly from a trusted source like the course instructor. One

month after the intervention, only 39 percent of treated students correctly identified the course median for

STEM majors—a statistic they were directly told—suggesting a high degree of inattention.

Given the light touch nature of the intervention and the complex nature of the targeted behavior, a

reasonable null hypothesis for effects on major choice may in fact be no change to academic decisions. The

choice of college major and subsequent career path is a hugely consequential choice based on preferences

and beliefs that have formed over eighteen years prior to entering college. Moreover, many factors matter

for major choice, from the large and obvious—e.g., expected earnings and employment (see Patnaik et al.

(2021) for a review)—to the seemingly small—e.g, the semester in which a student takes an introductory

course (Patterson et al., 2023). And, the various factors likely interact in complex ways. In the current

experiment, all of these other factors are held constant, stacking the deck against meaningful behavioral

change.

This study sits within a broader body of research that tries to address behavioral barriers in educational

decision-making. This literature is somewhat mixed. Some light-touch, informational interventions

have proved successful at encouraging behaviors such as FAFSA filing (Page et al., 2020) and college

application, enrollment, and persistence (Hoxby and Turner, 2013; Castleman and Page, 2015, 2016, 2017),

but some—especially those attempted at scale—have not (Bergman et al., 2019; Avery et al., 2021; Bird

et al., 2021; Gurantz et al., 2021). Page and Gehlbach (2022) suggest that nudges are most effective when

they target acute, time-sensitive tasks (such as filing a form by a deadline) rather than providing more general

academic advice or targeting larger decisions. Given these prior findings and the high-stakes nature of major

choice, it is perhaps not surprising that the intervention studied here was not more successful. However, I
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cannot rule out that information about relative performance might be more effective if delivered in person

(as in Porter and Serra (2019)), if it were more targeted to underrepresented students (as in Bayer et al.

(2019), if it were delivered to younger students, or to a different population of college students.

8 Conclusion

Gender differences in college major choice and their implications for the labor market are of great

interest to policymakers. There is a strong theoretical and empirical basis for believing that gender

differences in perceptions of relative performance in STEM may be contributing to gender gaps in college

major choice, but the causal evidence identifying this mechanism has thus far been limited. In a large

field experiment across seven introductory STEM courses, I provided students with information about their

performance relative to their classmates and relative to STEM majors. I combine survey data on students’

beliefs with administrative data on academic behavior to investigate behavioral changes and the mechanisms

behind them.

Consistent with prior empirical findings about gender differences in beliefs, I find that men,

particularly the lowest performing ones, are substantially more overconfident than women about their

relative performance in STEM courses, and that these beliefs are correlated with later behavior. Consistent

with theory that beliefs matter for educational choices, providing information may have decreased STEM

persistence for students who received bad news. However, students who received good news—in particular,

underconfident women—did not display an equivalent increase in persistence, and the overall gender gap in

major choice (by five semesters later) was unchanged.

Several important questions remain unanswered and are ripe for future research. This paper studied

only students in STEM classes, who had already shown a high level of interest in STEM, and focused on

STEM-specific beliefs. In future work, it will be important to study students’ beliefs about their performance
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in non-STEM subjects, where gender differences may be less stark or even reversed. Likewise, non-STEM

students may be even more biased about STEM than STEM students, and susceptible to interventions

encouraging STEM. Understanding the full set of students’ beliefs about who pursues various fields and

their own field-specific potential is critical for understanding field specialization decisions.

While I included students studying multiple STEM subjects, this single study lacks the statistical

power to precisely compare across STEM fields. We might expect biology—a predominantly female

field—to show different patterns in students’ beliefs and different responses to intervention than a

male-dominated field like engineering. Future work should explore this further. Finally, this paper studies

students at a single, highly selective institution, the University of Michigan. The degree of overconfidence

among the students in my sample may be related to their backgrounds and high levels of prior achievement;

different populations of students may hold very different beliefs about relative performance and react

differently to information.

This work speaks to the limits of light-touch interventions in changing consequential behaviors such

as major choice. There is a growing consensus in the economics of education literature that "nudge"

interventions can be effective at targeting small, self-contained tasks, but that larger behaviors such as

college persistence and major choice seem to require more intensive, sustained intervention (Page and

Gehlbach, 2022; Oreopoulos, 2020). A more intensive intervention or one targeting younger students may

be effective at changing beliefs and behavior even more, but researchers should design such interventions

carefully to avoid discouraging students with bad news or reinforcing stereotypes. Taken in context, my

findings suggest that biased beliefs about relative academic performance may be one important piece of the

large, complex issue of decisions about major choice and gender differences in STEM. However, increasing

women’s STEM participation likely requires additional approaches.
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Figure 1: Study Timeline and Experimental Design

Sept 1 Oct 1 Nov 1 Dec 1 Dec 20

INTERVENTION
(Nov 11)

Pre-intervention survey open
(Sept 1 - Nov 10)

Post-intervention survey open
(Dec 1 - Dec 13)

Spring registration
(Nov 21-Dec 6)

Spring course selection
opens (Nov 11)

Fall classes start
(Sept 3)

Classes end
(Dec 11)

Exams end
(Dec 20)

(a) Study Timeline

All students
(N = 5,715)

Below median
(N = 2,892)

Above median
(N = 2,823)

Control
(N = 1,442)

Info only
(N = 1,450)

Control
(N=940)

Info only
(N = 943)

Encouragement
(N = 940)

1/2 1/2 1/3 1/3 1/3

(b) Experimental Design

Notes: “Median” is in reference to the course-specific distribution (e.g., the median for STATS 250). “Info only" refers
to the information-only treatment; “Encouragement" refers to the information-plus-encouragement treatment arm.
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Figure 2: Control Student Beliefs about Own Percentile, by Gender
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(b) End of Semester Beliefs

Notes: The sample is restricted to control students who responded to the question about percentile beliefs on both
the pre- and post-intervention surveys. The x-axis measures students’ realized percentile within the course, measured
at the end of the semester. The y-axis measures what students predict their final percentile will be when asked on
the survey. Both figures are binned scatterplots, plotting average predicted percentile within 50 equally-sized bins of
students, grouped by realized percentile.
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Figure 3: Control Student Beliefs about Course Median for STEM Majors, by Gender
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(b) End of Semester Beliefs

Notes: The sample is restricted to control students who responded to the question about the median on both the pre-
and post-intervention surveys. The median refers to the median grade for students who previously took the course
and later majored in a STEM field. The median is not gender-specific. Overestimating means the student thinks the
median is higher than it is (e.g., the median is a B and they think it is a B+), while underestimating means they think
the median is lower than it is.
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Figure 4: Post-Treatment Student Beliefs about Own Percentile, by Treatment Status and Gender

(a) Men

(b) Women

Notes: The x-axis measures students’ realized percentile within the course, measured at the time of the intervention.
This corresponds to the percentile students were informed of as part of the intervention. The y-axis measures what
students predict their final percentile will be when asked on the survey. Figure is a binned scatterplot plotting the
average values within 50 equally-sized bins of students.
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Figure 5: Medium- and Long-Term Effects on Coursetaking and Major Choice, by Gender

(a) Effects on Number of STEM Credits

(b) Effects on Probability of Declaring a STEM Major

Notes: Treatment effects by gender are estimated from a single regression of the outcome on assignment to either
treatment, female, and treatment-times-female, controlling for student academic and demographic characteristics and
randomization strata dummies (Equation 2). Bars show 95% confidence intervals based on robust standard errors.
Course-taking and major declaration outcomes are based on University of Michigan administrative data. Number of
credits are measured in a given semester (not cumulative). A student is coded as declaring a STEM major if they are
declared as a STEM or econ major in the given semester or if they graduated with a degree in a STEM or econ field.
A table of estimated effects, standard errors, and control means appears as Appendix Table A.11.
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Table 1: Balance by Assignment to Treatment, Full Sample

Control mean Treatment mean p-value N non-missing

Female 0.479 0.474 - 5,715
Class standing (omitted: senior)

First year 0.433 0.417 0.318 5,715
Sophomore 0.387 0.403 0.551
Junior 0.132 0.132 0.819

Race/ethnicity (omitted: American Indian or multiple race/ethnicities)
White 0.558 0.543 0.262 5,554
Hispanic 0.070 0.068 0.422
Asian 0.254 0.289 0.156
Black 0.038 0.025 0.212

Declared major (omitted: other)
Undeclared 0.560 0.559 0.606 5,715
Engineering 0.232 0.236 0.484
Math, science, or economics 0.095 0.094 0.657

Academic and demographic characteristics
In-state 0.524 0.520 0.362 5,715
Prior college GPA 3.38 3.43 0.668 2,385
Math placement score (std) -0.080 0.057 0.438 5,478
ACT English 32.3 32.6 0.887 3,151
ACT Math 30.9 31.3 0.990 3,151
ACT Reading 32.0 31.8 0.006 3,151
ACT Science 30.9 31.1 0.300 3,151
SAT Math 705 714 0.559 3,407
SAT Verbal 642 647 0.876 3,407
High school GPA 3.88 3.89 0.550 4,952
Took calculus in HS 0.814 0.838 0.428 5,104

Max parental education (omitted: less than high school)
High school 0.071 0.070 0.273 5,641
Some college 0.064 0.051 0.411
Bachelor’s 0.253 0.241 0.433 5,641
Grad or professional degree 0.588 0.617 0.604

Family income (omitted: less than $50,000)
$50,000-100,000 0.182 0.189 0.213 4,374
Above $100,000 0.625 0.643 0.542

P-value on F-test of all X’s 0.836 5,715
Total N 2,382 3,333 5,715

Notes: “Treatment” includes students receiving either treatment arm. P-values are based on a regression of the
characteristic on treatment status, controlling for randomization strata. I also test for differences in missingness
rates on all variables and find none. The F-test tests for joint significance of all listed characteristics (except
for female, which is blocked on) as well as missingness rates in predicting treatment, controlling for strata. All
characteristics are based on University of Michigan administrative data.
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Table 2: Decomposition of Gender Gap in STEM Credits and Major Choice by Relative
Performance Beliefs and Other Covariate Components (Control Students Only)

STEM credits P(STEM major)
(1 semester later) (5 semesters later)

Raw female - male gap -2.148 -0.142
(0.280) (0.031)

Gap explained Percent of Gap explained Percent of
Covariate by covariate total gap by covariate total gap

Own percentile belief -0.044 2% -0.003 2%
(0.037) (0.004)

STEM median belief -0.105 5% -0.019 13%
(0.052) (0.007)

Realized percentile -0.021 1% -0.002 2%
(0.024) (0.003)

Demographics 0.017 -1% 0.001 -1%
(0.050) (0.006)

High school achievement -0.021 1% -0.011 8%
(0.097) (0.011)

Math placement score -0.146 7% -0.016 11%
(0.059) (0.007)

Prior college achievement -0.039 2% -0.007 5%
(0.047) (0.006)

Student level 0.002 0% 0.001 0%
(0.025) (0.004)

Declared major -0.690 32% -0.032 23%
(0.155) (0.014)

Total explained -1.048 49% -0.088 62%
Total unexplained -1.100 51% -0.054 38%

N 918 918

Notes: This decomposition follows Gelbach (2016). STEM credits are measured in the semester following the
one when students took the course. STEM major is measured five semesters later; a student who is declared
as a STEM major or graduated with a STEM degree is considered a major. Own percentile belief is a student’s
1-100 prediction of their own final course percentile, measured in the end of semester survey. STEM median
belief is measured as two indicators for whether a student is over- or underestimating the course median for
STEM majors, measured in the end of semester survey. Demographics include race, parent education, family
income, and in-state status. High school achievement includes ACT and SAT scores, high school GPA, and a
high school calculus indicator. College achievement is measured as prior GPA at UM. The sample is limited
to control students who answered both surveys.
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Table 3: Estimated Effect of Intervention on Students’ Beliefs about Themselves and Other
STEM Majors, Overall and by Gender

Absolute value of error in percentile Signed error in percentile beliefs
beliefs ( | Predicted – realized | ) (Predicted – realized)

All Men Women All Men Women

Treatment effect -1.485** -2.243** -0.743 0.592 0.536 0.647
(0.657) (1.007) (0.858) (0.849) (1.270) (1.138)

P-value, women vs. men 0.259 0.948

Control mean 18.981 20.331 17.646 6.361 8.471 4.276

N 2,358 1,166 1,192 2,358 1,166 1,192

Underestimating course Overestimating course
median for STEM majors median for STEM majors

All Men Women All Men Women

Treatment effect -0.033** -0.052** -0.016 -0.023 0.007 -0.051**
(0.015) (0.022) (0.019) (0.018) (0.026) (0.026)

P-value, women vs. men 0.220 0.111

Control mean 0.206 0.257 0.159 0.46 0.368 0.545

N 2,632 1,291 1,341 2,632 1,291 1,341

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students are estimated from a regression of the outcome
on assignment to either treatment, controlling for student academic and demographic characteristics and randomization strata
dummies (Equation 1). Treatment effects by gender are estimated from a single regression of the outcome on assignment to
either treatment, female, and treatment-times-female, controlling for student academic and demographic characteristics and
randomization strata dummies (Equation 2). Robust standard errors are reported. All beliefs outcomes are based on responses
to the post-intervention survey. Realized performance is measured mid-semester, at the time of intervention.
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Table 4: Estimated Effect of Intervention on Students’ Beliefs, by Pre-Intervention Beliefs

Signed error in percentile beliefs Underestimating course Overestimating course
(Predicted - realized) median for STEM majors median for STEM majors

All Men Women All Men Women All Men Women

Panel A. Treatment effect by own percentile beliefs
Students underpredicting 1.562 0.986 2.072 0.006 -0.038 0.043 -0.105*** -0.091* -0.118***
percentile (got good news) (1.436) (2.322) (1.761) (0.024) (0.039) (0.029) (0.034) (0.050) (0.046)

[-12.570] [-11.825] [-13.252] [0.144] [0.219] [0.081] [0.585] [0.500] [0.658]

Students overpredicting 0.172 0.580 -0.246 -0.047** -0.038 -0.055** 0.018 0.056 -0.021
percentile (got bad news) (1.105) (1.627) (1.506) (0.020) (0.030) (0.028) (0.024) (0.034) (0.035)

[13.874] [15.222] [12.530] [0.232] [0.263] [0.201] [0.406] [0.303] [0.506]

N 2,032 1,009 1,023 2,223 1,101 1,122 2,223 1,101 1,122

Panel B. Treatment effect by STEM median beliefs
Students who correctly 1.799 4.472* -1.175 -0.015 -0.036 0.010 -0.043 0.021 -0.116**
identified STEM median (1.627) (2.412) (2.111) (0.028) (0.041) (0.038) (0.037) (0.050) (0.054)

[5.075] [3.764] [6.544] [0.173] [0.213] [0.129] [0.407] [0.335] [0.486]

Students initially overestimating 0.196 -1.693 1.421 -0.020 -0.018 -0.021 -0.013 0.030 -0.040
median (got good news) (1.259) (2.023) (1.613) (0.018) (0.031) (0.023) (0.029) (0.049) (0.036)

[6.188] [11.020] [3.089] [0.113] [0.118] [0.109] [0.630] [0.521] [0.697]

Students initially underestimating -0.319 -1.037 0.758 -0.083** -0.111** -0.037 -0.039 -0.006 -0.095*
median (got bad news) (1.950) (2.523) (3.081) (0.038) (0.049) (0.061) (0.032) (0.040) (0.052)

[7.022] [8.681] [4.533] [0.442] [0.479] [0.390] [0.219] [0.190] [0.260]

N 2,123 1,036 1,087 2,350 1,142 1,208 2,350 1,142 1,208

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students are estimated from a regression of the outcome on assignment to either treatment, indicators
for pre-intervention beliefs, and treatment-by-pre-beliefs interactions, controlling for student academic and demographic characteristics and randomization strata dummies.
Treatment effects by gender are estimated from a single regression with a three-way interaction between treatment, female, and pre-intervention beliefs, controlling for student
academic and demographic characteristics and randomization strata dummies. Pre-intervention beliefs are based on responses to the pre-intervention survey. In Panel A,
underpredicting means the student’s self-prediction of their percentile was lower than (or equal to) the percentile the intervention informed them of, while overpredicting means
their self-prediction was higher than the information they received. In Panel B, students are categorized by whether they initially correctly identified the course median for students
who go on to major in STEM. Robust standard errors are reported. Control means are in square brackets. All beliefs outcomes are based on responses to the post-intervention
survey. Realized performance is measured mid-semester, at the time of intervention.
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Table 5: Estimated Effect of Intervention on Students’ STEM Major Choice,
by Pre-Intervention Beliefs

Declared as STEM major
five semesters post intervention

All Men Women

Panel A. Treatment effect by own percentile beliefs
Students underpredicting 0.027 0.032 0.024
percentile (got good news) (0.024) (0.034) (0.035)

[0.660] [0.706] [0.619]

Students overpredicting -0.036** -0.025 -0.049*
percentile (got bad news) (0.017) (0.023) (0.026)

[0.603] [0.702] [0.494]

N 3,664 1,874 1,790

Panel B. Treatment effect by STEM median beliefs
Students who correctly -0.022 -0.004 -0.044
identified STEM median (0.025) (0.032) (0.038)

[0.645] [0.733] [0.545]

Students initially overestimating -0.006 0.020 -0.025
median (got good news) (0.020) (0.030) (0.027)

[0.568] [0.660] [0.501]

Students initially underestimating -0.033 -0.054* 0.003
median (got bad news) (0.027) (0.032) (0.046)

[0.698] [0.741] [0.626]

N 3,915 1,973 1,942

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students are estimated from a regression of
the outcome on assignment to either treatment, indicators for pre-intervention beliefs, and treatment-by-pre-beliefs
interactions, controlling for student academic and demographic characteristics and randomization strata dummies.
Treatment effects by gender are estimated from a single regression with a three-way interaction between
treatment, female, and pre-intervention beliefs, controlling for student academic and demographic characteristics and
randomization strata dummies. Pre-intervention beliefs are based on responses to the pre-intervention survey. In Panel
A, underpredicting means the student’s self-prediction of their percentile was lower than (or equal to) the percentile
the intervention informed them of, while overpredicting means their self-prediction was higher than the information
they received. In Panel B, students are categorized by whether they initially correctly identified the course median for
students who go on to major in STEM. Robust standard errors are reported. Control means are in square brackets.
Major declaration outcomes are based on University of Michigan administrative data.
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Table 6: Estimated Effect of Intervention on Performance and Academic Attitudes

Final exam or project score Final course score
(out of 100) (out of 100)

All Men Women All Men Women

Treatment effect -0.167 -0.013 -0.334 0.004 -0.141 0.164
(0.332) (0.454) (0.486) (0.186) (0.252) (0.275)

P-value, women vs. men 0.630 0.415

Control mean 80.917 81.666 80.107 83.974 84.62 83.273

N 5,323 2,785 2,538 5,648 2,961 2,687

STEM success index Grade stress
(std. dev. units) (std. dev. units)

All Men Women All Men Women

Treatment effect 0.024 0.013 0.035 0.001 -0.029 0.029
(0.025) (0.035) (0.035) (0.039) (0.058) (0.051)

P-value, women vs. men 0.656 0.451

Control mean 0 0.116 -0.108 0 -0.239 0.221

N 2,687 1,317 1,370 2,638 1,290 1,348

Intent to major in STEM STEM interest/intent index
(binary) (std. dev. units)

All Men Women All Men Women

Treatment effect -0.019 -0.011 -0.026 -0.066** -0.045 -0.085*
(0.016) (0.020) (0.024) (0.031) (0.040) (0.047)

P-value, women vs. men 0.623 0.526

Control mean 0.733 0.788 0.682 0 0.11 -0.102

N 2,662 1,302 1,360 2,639 1,289 1,350

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students are estimated from a regression of
the outcome on assignment to either treatment, controlling for student academic and demographic characteristics and
randomization strata dummies (Equation 1). Treatment effects by gender are estimated from a single regression of
the outcome on assignment to either treatment, female, and treatment-times-female, controlling for student academic
and demographic characteristics and randomization strata dummies (Equation 2). Robust standard errors are reported.
Performance outcomes are based on University of Michigan administrative data. The STEM success index is based
on post-intervention survey responses and aggregates items about being “good enough” for STEM, self-efficacy, and
STEM identity. Grade stress is based on a post-intervention survey item asking students to rank the stress and anxiety
they feel about academic performance and grades. STEM interest and intent outcomes are based on responses to the
post-intervention survey.
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Appendix A. Supplemental Figures and Tables

Figure A.1: Sample Intervention Message: Information-Only Treatment
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Figure A.2: Sample Intervention Message: Information-Plus-Encouragement Treatment
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Figure A.3: Sample Intervention Message: Control Group
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Figure A.4: Medium- and Long-Term Effects on Coursetaking and Major Choice, by Gender,
Estimated without Covariates

(a) Effects on Number of STEM Credits

(b) Effects on Probability of Declaring a STEM Major

Notes: Treatment effects by gender estimated from a single regression of the outcome on assignment to either
treatment, female, and treatment-times-female, controlling only for randomization strata dummies. Bars show 95%
confidence intervals based on robust standard errors. Course-taking and major declaration outcomes based on
University of Michigan administrative data. Number of credits are measured in a given semester (not cumulative).
A student is coded as declaring a STEM major if they are declared as a STEM or econ major in the given semester or
if they graduated with a degree in a STEM or econ field.
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Figure A.5: Medium- and Long-Term Effects on Coursetaking and Major Choice, by Gender,
Limited to Survey Respondents

(a) Effects on Number of STEM Credits

(b) Effects on Probability of Declaring a STEM Major

Notes: Sample limited to students with a response to the post-intervention survey. Treatment effects by
gender estimated from a single regression of the outcome on assignment to either treatment, female, and
treatment-times-female, controlling for student academic and demographic characteristics and randomization strata
dummies. Bars show 95% confidence intervals based on robust standard errors. Course-taking and major declaration
outcomes based on University of Michigan administrative data. Number of credits are measured in a given semester
(not cumulative). A student is coded as declaring a STEM major if they are declared as a STEM or econ major in the
given semester or if they graduated with a degree in a STEM or econ field.59



Table A.1: Intervention Message View Rate by Student Characteristics,
Treated Students Only

Viewed Viewed
Characteristic message Characteristic message

Female 0.045** Declared major (omitted: other)
(0.021) Undeclared -0.044**

Above course median 0.034* (0.020)
(0.020) Engineering -0.056*

Female*above median 0.008 (0.030)
(0.026) Math, science, or econ -0.016

Course (omitted: Chemistry) (0.028)
Biology 0.145*** Acad. and demog. characteristics

(0.027) In state -0.015
Econ (section 1) 0.108*** (0.015)

(0.030) Prior college GPA 0.081***
Econ (section 2) 0.116*** (0.025)

(0.033) College GPA missing 0.360***
Computer Science 0.162*** (0.090)

(0.026) Math placement score 0.002
Engineering 0.144*** (0.002)

(0.031) Placement score missing 0.046
Physics 0.129*** (0.058)

(0.033) ACT English -0.005
Statistics 0.167*** (0.003)

(0.024) ACT math 0.003
Class standing (omitted: senior) (0.003)
First year 0.034 ACT reading -0.003

(0.040) (0.003)
Sophomore 0.039 ACT science 0.001

(0.036) (0.003)
Junior 0.017 ACT missing -0.186*

(0.037) (0.106)
Race/ethnicity (omitted: other/multiple) SAT math -0.000
White 0.026 (0.000)

(0.027) SAT verbal -0.000*
Hispanic 0.008 (0.000)

(0.037) SAT missing -0.249**
Asian 0.016 (0.123)

(0.029) HS GPA -0.009
Black 0.095** (0.062)

(0.046) HS GPA missing -0.016
Race/ethnicity missing -0.039 (0.243)

(0.050) Took calculus in HS 0.008
(0.020)

HS calculus missing -0.014
(0.032)

Continued on next page
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Table A.1 – Continued from previous page
Viewed

Characteristic message

Max parent ed (omitted: less than HS)
High school -0.045

(0.050)
Some college -0.048

(0.052)
Bachelor’s -0.023

(0.047)
Grad or professional degree -0.049

(0.046)
Parent ed missing -0.061

(0.077)
Family income (omitted: <$50,000)
$50,000-100,000 -0.011

(0.026)
Above $100,000 0.006

(0.023)
Family income missing 0.003

(0.025)

N 3,333

Notes: Table shows coefficients and robust standard errors from a regression where the dependent
variable is an indicator for viewing the intervention message. Sample limited to students assigned
to treatment.
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Table A.2: Balance by Assignment to Information-Only and Information-Plus-Encouragement
Treatment, Above-Median Students Only

Information
Information plus

Control only encouragement p-value

Female 0.461 0.459 0.461 -
Class standing (omitted: senior)
First year 0.418 0.420 0.404 0.725
Sophomore 0.419 0.411 0.428 0.764
Junior 0.126 0.125 0.127 0.993
Race/ethnicity (omitted: American Indian or multiple race/ethnicities)
White 0.566 0.527 0.555 0.180
Hispanic 0.041 0.055 0.044 0.305
Asian 0.319 0.343 0.330 0.493
Black 0.013 0.007 0.014 0.174
Declared major (omitted: other)
Undeclared 0.545 0.541 0.539 0.964
Engineering 0.260 0.255 0.266 0.709
Math, science, or economics 0.104 0.112 0.091 0.306
Academic and demographic characteristics
In-state 0.480 0.460 0.490 0.410
Prior college GPA 3.61 3.61 3.63 0.807
Math placement score (std) 0.330 0.365 0.331 0.540
ACT English 33.4 33.3 33.5 0.374
ACT Math 32.3 32.3 32.4 0.815
ACT Reading 32.7 32.3 32.7 0.057
ACT Science 32.2 32.1 32.2 0.896
SAT Math 738 739 735 0.306
SAT Verbal 661 659 661 0.902
High school GPA 3.92 3.92 3.91 0.629
Took calculus in HS 0.873 0.882 0.858 0.313
Max parental education (omitted: less than high school)
High school 0.042 0.055 0.040 0.284
Some college 0.038 0.029 0.037 0.499
Bachelor’s 0.242 0.221 0.248 0.366
Grad or professional degree 0.669 0.683 0.663 0.620
Family income (omitted: less than $50,000)
$50,000-100,000 0.158 0.170 0.166 0.803
Above $100,000 0.731 0.704 0.716 0.502

Total N 940 943 940 2,823

Notes: Sample limited to above-median students; only above-median students were eligible for the
information-plus-encouragement treatment. P-values based on a joint test of differences in the characteristic by
treatment status, controlling for strata. I also test for differences in missingness rates on all variables and find none.
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Table A.3: Balance by Assignment to Treatment, by Gender

Men Women

Control Treat p-value Control Treat p-value

Class standing (omitted: senior)
First year 0.446 0.407 0.078 0.419 0.428 0.688
Sophomore 0.370 0.405 0.236 0.406 0.401 0.711
Junior 0.135 0.136 0.813 0.129 0.128 0.934
Race/ethnicity (omitted: American Indian or multiple race/ethnicities)
White 0.560 0.543 0.475 0.556 0.544 0.380
Hispanic 0.078 0.072 0.875 0.062 0.064 0.303
Asian 0.258 0.300 0.201 0.248 0.277 0.482
Black 0.025 0.018 0.672 0.052 0.033 0.212
Declared major (omitted: other)
Undeclared 0.487 0.477 0.947 0.638 0.650 0.415
Engineering 0.305 0.314 0.842 0.153 0.149 0.384
Math, science, or economics 0.103 0.102 0.767 0.086 0.086 0.739
Academic and demographic characteristics
In-state 0.514 0.506 0.688 0.534 0.536 0.366
Prior college GPA 3.30 3.37 0.812 3.44 3.48 0.365
Math placement score (std) 0.080 0.242 0.081 -0.251 -0.146 0.564
ACT English 32.4 32.5 0.287 32.2 32.7 0.397
ACT Math 31.9 32.1 0.641 29.8 30.4 0.663
ACT Reading 32.0 31.8 0.026 32.0 31.9 0.105
ACT Science 31.6 31.8 0.464 30.1 30.4 0.464
SAT Math 717 730 0.133 690 694 0.019
SAT Verbal 646 654 0.298 638 639 0.159
High school GPA 3.87 3.88 0.688 3.90 3.90 0.651
Took calculus in HS 0.832 0.867 0.097 0.796 0.806 0.653
Max parental education (omitted: less than high school)
High school 0.069 0.062 0.998 0.072 0.079 0.125
Some college 0.052 0.043 0.591 0.077 0.061 0.534
Bachelor’s 0.242 0.237 0.973 0.265 0.245 0.276
Grad or professional degree 0.612 0.639 0.647 0.561 0.593 0.785
Family income (omitted: less than $50,000)
$50,000-100,000 0.175 0.185 0.307 0.190 0.195 0.462
Above $100,000 0.658 0.664 0.390 0.588 0.619 0.990

P-value on F-test of all X’s 0.817 0.623
Total N 1,240 1,753 2,993 1,142 1,580 2,722

Notes: “Treat” column includes students receiving either treatment arm. P-values based on a regression of the
characteristic on treatment status, controlling for strata. I also test for differences in missingness rates on all variables
and find none. F-test tests for joint significance of all listed characteristics as well as missingness rates in predicting
treatment, controlling for strata.
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Table A.4: Study Sample and Gender Breakdown by Course

Number Proportion Course
of of proportion

Course (for study) students sample women

Biology 566 0.099 0.654
Chemistry 1,127 0.197 0.531
Economics 825 0.144 0.461
Computer Science 882 0.154 0.376
Engineering 453 0.079 0.305
Physics 327 0.057 0.269
Statistics 1,535 0.269 0.531

Total 5,715 1.000 0.476

In multiple courses 855 0.150

Notes: Students in multiple courses are assigned to a single course, chosen randomly, for purposes of the study, so that
the proportions across study courses sum to 1. Course proportion women measures the proportion of students in the
sample for each course who are women.
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Table A.5: Survey Response Rates

Response Number of
rate responses

Pre-intervention survey
Overall response 0.746 4,266

Item-level response
Belief about own performance 0.641 3,664
Belief about STEM major performance 0.685 3,915

Post-intervention survey
Overall response 0.487 2,784

Item-level response
Belief about own performance 0.413 2,358
Belief about STEM major performance 0.461 2,632
Intended major 0.466 2,662
Grade stress 0.462 2,638

STEM interest index 0.462 2,639
General interest in STEM 0.460 2,631
Intent to seek STEM advising 0.461 2,632
Intent to take STEM courses 0.462 2,638

STEM success index 0.470 2,687
Grades good enough for STEM 0.465 2,655
Self-efficacy scale 0.464 2,651
STEM identity scale 0.461 2,636
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Table A.6: Post-Intervention Survey Response by Student Characteristics,
Full Sample

Took Took
Characteristic survey Characteristic survey

Female 0.071*** Declared major (omitted: other)
(0.017) Undeclared 0.006

Above course median 0.070*** (0.019)
(0.017) Engineering 0.080***

Female*above median -0.022 (0.025)
(0.022) Math, science, or econ 0.031

Course (omitted: Econ section 1) (0.027)
Biology 0.561*** Acad. and demog. characteristics

(0.024) In state 0.009
Chemistry 0.017 (0.012)

(0.017) Prior college GPA 0.109***
Computer Science 0.485*** (0.020)

(0.022) College GPA missing 0.418***
Engineering 0.642*** (0.071)

(0.027) Math placement score 0.002
Physics 0.086*** (0.002)

(0.027) Placement score missing -0.007
Statistics 0.641*** (0.048)

(0.017) ACT English 0.001
Econ (section 2) 0.610*** (0.003)

(0.028) ACT math -0.001
Class standing (omitted: senior) (0.003)
First year 0.080** ACT reading 0.000

(0.035) (0.003)
Sophomore 0.086*** ACT science -0.005*

(0.031) (0.003)
Junior 0.023 ACT missing -0.168*

(0.031) (0.093)
Race/ethnicity (omitted: other/multiple) SAT math -0.000
White 0.007 (0.000)

(0.022) SAT verbal -0.000***
Hispanic 0.008 (0.000)

(0.030) SAT missing -0.295***
Asian 0.067*** (0.104)

(0.024) HS GPA 0.123**
Black -0.032 (0.053)

(0.039) HS GPA missing 0.479**
Race/ethnicity missing 0.052 (0.207)

(0.039) Took calculus in HS -0.001
(0.017)

HS calculus missing -0.016
(0.026)

Continued on next page
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Table A.6 – Continued from previous page
Took

Characteristic survey

Max parent ed (omitted: less than HS)
High school -0.000

(0.044)
Some college -0.024

(0.046)
Bachelor’s 0.011

(0.041)
Grad or professional degree -0.007

(0.041)
Parent ed missing 0.027

(0.064)
Family income (omitted: < $50,000)
$50,000-100,000 0.013

(0.022)
Above $100,000 0.026

(0.020)
Family income missing 0.047**

(0.022)

N 5,715

Notes: Table shows coefficients and robust standard errors from a regression where the dependent
variable is an indicator for response to the end of term survey.

67



Table A.7: Balance by Assignment to Treatment, Post-Intervention Survey Respondents

Control mean Treatment mean p-value N non-missing

Female 0.517 0.506 - 2,784
Class standing (omitted: senior)
First year 0.411 0.392 0.310 2,784
Sophomore 0.417 0.428 0.900
Junior 0.129 0.136 0.340
Race/ethnicity (omitted: American Indian or multiple race/ethnicities)
White 0.533 0.535 0.916 2,698
Hispanic 0.061 0.063 0.194
Asian 0.304 0.317 0.640
Black 0.030 0.019 0.268
Declared major (omitted: other)
Undeclared 0.601 0.574 0.254 2,784
Engineering 0.201 0.209 0.300
Math, science, or economics 0.095 0.104 0.502
Academic and demographic characteristics
In-state 0.506 0.517 0.291 2,784
Prior college GPA 3.44 3.47 0.204 1,172
Math placement score (std) -0.025 0.107 0.869 2,676
ACT English 32.5 32.7 0.502 1,567
ACT Math 30.9 31.4 0.814 1,567
ACT Reading 32.1 31.9 0.008 1,567
ACT Science 30.9 31.1 0.367 1,567
SAT Math 708 717 0.251 1,623
SAT Verbal 640 647 0.815 1,623
High school GPA 3.89 3.90 0.999 2,374
Took calculus in HS 0.817 0.842 0.719 2,506
Max parental education (omitted: less than high school)
High school 0.069 0.066 0.386 2,746
Some college 0.061 0.049 0.581
Bachelor’s 0.255 0.241 0.377 2,746
Grad or professional degree 0.593 0.624 0.636
Family income (omitted: less than $50,000)
$50,000-100,000 0.192 0.185 0.959 2,096
Above $100,000 0.628 0.659 0.919

P-value on F-test of all X’s 0.943 2,784
Total N 1,154 1,630 2,784

Notes: Sample limited to students who responded to post-intervention survey. “Treatment” includes students receiving
either treatment arm. P-values based on a regression of the characteristic on treatment status, controlling for strata.
I also test for differences in missingness rates on all variables and find none. F-test tests for joint significance of all
listed characteristics (except for female, which is blocked on) as well as missingness rates in predicting treatment,
controlling for strata.
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Table A.8: Estimated Effect of Intervention on Students’ Beliefs about Themselves, Comparing
Beliefs to End of Semester Performance

Absolute value of error in percentile Signed error in percentile beliefs
beliefs ( | Predicted - realized | ) (Predicted - realized)

All Men Women All Men Women

Treatment effect -1.381** -1.466 -1.298 0.329 0.086 0.567
(0.651) (0.987) (0.861) (0.929) (1.382) (1.250)

P-value, women vs. men 0.898 0.797

Control mean 19.351 20.241 18.469 4.952 7.2 2.722

N 2,355 1,166 1,189 2,355 1,166 1,189

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students estimated from a regression of the
outcome on assignment to either treatment, controlling for student academic and demographic characteristics and
randomization strata dummies (Equation 1). Treatment effects by gender estimated from a single regression of the
outcome on assignment to either treatment, female, and treatment-times-female, controlling for student academic and
demographic characteristics and randomization strata dummies (Equation 2). Robust standard errors reported. All
beliefs outcomes based on response to post-intervention survey. Realized performance measured at the end of the
semester, as percentile rank of final grade.
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Table A.9: Estimated Effect of Intervention on Students’ Beliefs about Themselves and Other
STEM Majors, Overall and by Gender, without Covariates

Absolute value error in percentile Signed error in percentile beliefs
beliefs ( | Predicted - realized | ) (Predicted - realized)

All Men Women All Men Women

Treatment effect -1.509** -2.415** -0.626 0.543 0.414 0.669
(0.658) (1.006) (0.851) (0.845) (1.264) (1.126)

P-value, women vs. men 0.175 0.880

Control mean 18.981 20.331 17.646 6.361 8.471 4.276

N 2,358 1,166 1,192 2,358 1,166 1,192

Underestimating course Overestimating course
median for STEM majors median for STEM majors

All Men Women All Men Women

Treatment effect -0.029** -0.053** -0.007 -0.025 0.009 -0.057**
(0.015) (0.022) (0.019) (0.018) (0.026) (0.026)

P-value, women vs. men 0.114 0.070

Control mean 0.206 0.257 0.159 0.46 0.368 0.545

N 2,632 1,291 1,341 2,632 1,291 1,341

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects for all students estimated from a regression of
the outcome on assignment to either treatment, controlling only for randomization strata dummies. Treatment
effects by gender estimated from a single regression of the outcome on assignment to either treatment, female, and
treatment-times-female, controlling only for randomization strata dummies. Estimates with covariates are reported in
Table 3. Robust standard errors reported. All beliefs outcomes based on response to post-intervention survey. Realized
performance measured mid-semester, at the time of intervention.
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Table A.10: Estimated Effect of Intervention on Students’ Beliefs about Themselves and Other
STEM Majors, Using Inverse Probability Weighting to Adjust for Survey Non-response

Absolute value of error in percentile Signed error in percentile beliefs
beliefs (|Predicted - realized|) (Predicted - realized)

All Men Women All Men Women

Treatment effect -1.212 -2.871** 0.596 -0.192 -1.231 0.940
(inv. prob.-weighted) (0.866) (1.221) (1.233) (1.041) (1.444) (1.506)

P-value, women vs. men 0.048 0.300

Control mean 19.166 20.685 17.59 8.469 10.67 6.185
(inv. prob.-weighted)

N 2,358 1,166 1,192 2,358 1,166 1,192

Underestimating course Overestimating course
median for STEM majors median for STEM majors

All Men Women All Men Women

Treatment effect -0.019 -0.038 0.002 -0.012 0.017 -0.044
(inv. prob.-weighted) (0.017) (0.026) (0.023) (0.023) (0.034) (0.031)

P-value, women vs. men 0.243 0.187

Control mean 0.179 0.218 0.14 0.515 0.425 0.607
(inv. prob.-weighted)

N 2,632 1,291 1,341 2,632 1,291 1,341

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Inverse probability weights (IPW) are constructed by running a logistic
regression of an item response indicator on all of the characteristics listed in Table 1 as well as study course and an
indicator for performing above the course median at the time of treatment. The IPW is equal to one over the predicted
probability of response. IPW’s are specific to individual survey items. Treatment effects for all students estimated
from a regression of the outcome on assignment to either treatment, controlling for student academic and demographic
characteristics and randomization strata dummies, weighting observations by the inverse of the predicted probability
of responding to the relevant item. Treatment effects by gender estimated from a single regression of the outcome on
assignment to either treatment, female, and treatment-times-female, controlling for student academic and demographic
characteristics and randomization strata dummies and weighting by the IPW. Robust standard errors reported. All
beliefs outcomes based on response to post-intervention survey. Realized performance measured mid-semester, at the
time of intervention. Control means are also weighted by the IPW. Unweighted estimates are shown in Table 3.
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Table A.11: Medium- and Long-Term Effects on Coursetaking and Major Choice by Gender

Number of STEM credits Number of STEM credits Number of STEM credits Number of STEM credits Number of STEM credits
one semester post two semesters post three semesters post four semesters post five semesters post

Men Women Men Women Men Women Men Women Men Women

Treatment effect -0.276** -0.079 0.029 -0.039 -0.184 0.044 0.025 -0.394** 0.024 -0.080
(0.129) (0.140) (0.156) (0.163) (0.165) (0.168) (0.170) (0.176) (0.179) (0.170)

P-value, women vs. men 0.303 0.763 0.334 0.086 0.674

Control mean 9.476 7.454 9.098 7.302 8.785 6.819 8.099 6.415 6.913 5.196

N 2,993 2,722 2,993 2,722 2,993 2,722 2,993 2,722 2,993 2,722

Declared as STEM major Declared as STEM major Declared as STEM major Declared as STEM major Declared as STEM major
one semester post two semesters post three semesters post four semesters post five semesters post

Men Women Men Women Men Women Men Women Men Women

Treatment effect -0.013 -0.003 0.000 -0.022 -0.022 -0.020 -0.014 -0.014 -0.009 -0.014
(0.009) (0.010) (0.013) (0.014) (0.015) (0.016) (0.015) (0.017) (0.015) (0.017)

P-value, women vs. men 0.474 0.255 0.921 0.997 0.829

Control mean 0.451 0.285 0.54 0.377 0.623 0.459 0.694 0.515 0.695 0.518

N 2,993 2,722 2,993 2,722 2,993 2,722 2,993 2,722 2,993 2,722

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects by gender are estimated from a single regression of the outcome on assignment to either treatment, female, and treatment-times-female, controlling
for student academic and demographic characteristics and randomization strata dummies (Equation 2). Robust standard errors are reported. Course-taking and major declaration outcomes are based on University
of Michigan administrative data. Number of credits are measured in a given semester (not cumulative). A student is coded as declaring a STEM major if they are declared as a STEM or econ major in the given
semester or if they graduated with a degree in a STEM or econ field.
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Table A.12: Estimated Effect of Intervention on Students’ STEM Course-taking by Gender and
Treatment Arm, Above-Median Students Only

Number of STEM credits Declared as STEM major
one semester post intervention five semesters post intervention

All Men Women All Men Women

Pooled effect -0.151 -0.285* 0.007 0.012 0.022 0.000
(0.131) (0.171) (0.202) (0.016) (0.021) (0.025)

P-value, women vs. men 0.271 0.505

Info-only effect -0.192 -0.373* 0.021 0.011 0.028 -0.010
(0.151) (0.198) (0.235) (0.018) (0.023) (0.029)

P-value, women vs. men 0.201 0.309

Info + encouragement effect -0.110 -0.197 -0.006 0.013 0.015 0.010
(0.151) (0.198) (0.231) (0.018) (0.023) (0.029)

P-value, women vs. men 0.530 0.884

P-value, info vs. info+enc 0.587 0.378 0.907 0.907 0.559 0.498

Control mean 9.527 10.512 8.373 0.69 0.748 0.624
N 2,823 1,524 1,299 2,823 1,524 1,299

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. All effects in this table are estimated on the sample of above-median
students only. Only above-median students were eligible for the information-plus-encouragement treatment; all
below-median treated students received information only. Effect of either treatment (pooled) for above-median
students estimated from a regression of the outcome on an indicator for receiving either treatment (Equation 1).
To estimate pooled effects separately for above-median men and women, an interaction between any treatment and
female is added (Equation 2). Treatment effects of the information-only and info-plus-encouragement intervention for
above-median students are estimated using the same specifications as above, but with two separate treatment indicators
(Equation 3). All regressions control for student academic and demographic characteristics and randomization strata
dummies. Robust standard errors reported. Course-taking and major choice outcomes based on University of Michigan
administrative data.
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Table A.13: Estimated Effect of Intervention by Student Level and Intended Major

Number of STEM Declared as STEM
credits one semester major five semesters

post intervention post intervention

A. Treatment effect by student level
First year or sophomore -0.211** -0.012

(0.099) (0.012)
[8.580] [0.594]

Junior or senior -0.051 -0.010
(0.269) (0.025)
[8.174] [0.686]

p-value, treat-by-level interaction 0.575 0.947
N 5,715 5,715

B. Treatment effect by pre-intervention intended major
Intended STEM major -0.248** -0.023

(0.123) (0.015)
[9.487] [0.751]

Intended non-STEM major -0.053 0.033
(0.238) (0.024)
[4.809] [0.142]

p-value, treat-by-major interaction 0.466 0.051
N 3,988 3,988

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects in Panel A estimated from a regression of the
outcome on assignment to either treatment, an indicator for whether the student has junior or senior standing, and
a treatment-by-level interaction, controlling for student academic and demographic characteristics and randomization
strata dummies. Treatment effects in Panel B estimated from a regression of the outcome on assignment to either
treatment, an indicator for intended STEM major, and a treatment-by-STEM-major interaction, controlling for student
academic and demographic characteristics and randomization strata dummies. Intended major based on response to
a question about planned major in the pre-intervention survey. Student level and course-taking and major choice
outcomes based on University of Michigan administrative data. Robust standard errors reported. Control means in
square brackets.
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Table A.14: Estimated Effect of Intervention by Course Subject

Number of STEM Declared as STEM
credits one semester major five semesters

post intervention post intervention

Treatment effect by course subject
Biology 0.326 0.059

(0.305) (0.041)
[7.396] [0.470]

Chemistry -0.011 0.019
(0.201) (0.026)
[9.534] [0.609]

Computer Science -0.431* -0.068**
(0.250) (0.027)
[8.835] [0.689]

Economics -0.165 -0.026
(0.255) (0.028)
[7.007] [0.471]

Engineering 0.335 0.031
(0.267) (0.033)

[12.763] [0.866]

Physics -0.082 0.018
(0.367) (0.038)

[12.221] [0.860]

Statistics -0.533*** -0.040*
(0.197) (0.023)
[6.771] [0.566]

P-value, F-test of treat-by- 0.080 0.049
subject interactions
N 5,715 5,715

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects estimated from a regression of the outcome on
assignment to either treatment, course subject, and treatment-by-subject interactions, controlling for student academic
and demographic characteristics and randomization strata dummies. Robust standard errors reported. Course-taking
and major choice outcomes based on University of Michigan administrative data.
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Table A.15: Estimated Effect of Intervention by Instructor Gender

Number of STEM Declared as STEM
credits one semester major five semesters

post intervention post intervention

Treatment effect by instructor gender
Male instructor -0.195 -0.030*

(0.153) (0.017)
[9.141] [0.649]

Female instructor -0.175 -0.001
(0.121) (0.015)
[8.137] [0.588]

p-value, treat-by-female-instructor interaction 0.916 0.190
N 5,715 5,715

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects estimated from a regression of the
outcome on assignment to either treatment, an indicator for whether the course instructor was female, and a
treatment-by-female-instructor interaction, controlling for student academic and demographic characteristics and
randomization strata dummies. Instructor gender collected from university and personal webpages, based on (in order
of priority) stated pronouns, pronouns used on webpage, photo, and name. Two courses (economics and physics)
have only male instructors and three (biology, chemistry, and statistics) have only female instructors. Two courses
(engineering and computer science) have both male and female instructors, depending on section. Course-taking and
major choice outcomes based on University of Michigan administrative data. Robust standard errors reported. Control
means in square brackets.
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Table A.16: Estimated Effect of Intervention by Gender Composition of Course
(Proportion Men, Continuous)

Number of STEM Declared as STEM
credits one semester major five semesters

post intervention post intervention

Treatment effect -0.129 0.043
(main) (0.470) (0.058)

Proportion male 0.499 1.259***
(main) (2.973) (0.348)

Treatment-by-proportion- -0.102 -0.104
male interaction (0.866) (0.104)

N 5,715 5,715

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Treatment effects estimated from a regression of the outcome on
assignment to either treatment, a continuous measure of the proportion of the course sample that is male (0-1), and
a treatment-by-proportion-male interaction, controlling for student academic and demographic characteristics and
randomization strata dummies. Robust standard errors reported. Course-taking and major choice outcomes based on
University of Michigan administrative data.
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